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FIG. 1. The ground-state qudrupole moments Qp and
the asymmetry parameters Q& obtained in H-F calcula-
tions are compared with the values predicted from ki-
netic energy alone.
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In this paper we present the results of vari-
ational calculations for the ground-state defor-
mation of even-even nuclei, 8 &A &36. We
find that (a) the potential energy depends weak-
ly on deformation when compared with the cor-
responding variations in the kinetic energy,
tending, especially for oblate shapes, to reduce
the deformation a little; and (b) the magnitude
of the potential energy is greatest when precise-
ly those levels are filled for which the kinet-
ic energy is minimized. This suggests a pic-
ture in which it is primarily the behavior of
the kinetic energy that determines the ground-
state deformations in this region.

Kinetic-energy model. -Further evidence
for this conjecture is presented in Fig. 1. The
intrinsic quadrupole moments Qo and the asym-
metry parameter Q, that were obtained in the
Hartree-Fock (H-F) calculations'~' are com-
pared with the kinetic-energy model, Eqs. (1)-
(4) below.

In the kinetic-energy model' the neutrons
and protons fill the lowest single-particle states
in an anisotropic oscillator potential subject
to the volume conservation constraint, ~xco&~z
= a~, at all deformations (hw =41/A'~' Mev).
We may write the kinetic energy as

(IC) =o h~ +o he +o h~,x x y y z z'

Q =[2o '—o '—o ']q,
0 z x y 0' (3)

Q =2[o ' o']q-,
x

where qo
——38'/MZmin. In order to obtain iden-

tical signs for Q, in Mg'4 and S~' we have made
use of the freedom to order the o's arbitrarily.

In Ref. 1 the H-F equations were solved for
all nucleons using the anistropic oscillator ba-
sis. In view of the relatively flat behavior of
the potential energy, the agreement between
the kinetic-energy model and Ref. 1 is not sur-
prising. The similar results of Ref. 2, in which
the H-F equations are restricted to the nucle-
ons in the 2s-1d shell, the 0" core being re-
garded as inert, constitutes a fascinating puz-
zle in the s-d shell.

It is worth noting that for A ~40, wherever
the asymmetric deformations lie lowest (as
is usual for the non-4n nuclei) there is ordinar-
ily a symmetric minimum within 1 MeV. Such
small differences may easily be compensated
by the potential energy lost in breaking time-
rever sed pair states. The exception s are Mg'4~'

where the difference is 1.8 MeV.
Potential energy calculation. —We start from

a Slater determinant built up of neutron and
proton single-particle states filling the axial-
ly symmetric oscillator potential. The antisym-
metrized two-particle matrix elements (o.P I

x V i o.P) are evaluated by transforming into the
relative coordinates, where the difficulty of
the hard core of the potential can be overcome
by the separation method. 4 It is useful to ap-
proximate the single-particle states with an
extended version of the Nilsson' expansion in
spherical oscillator states,

lo. )—:![NN A]Q) = gA . [q (r)y(o)], (5)
nip

where, e.g., o~ is the sum 2+(n~+ —,') over the
x-oscillator quanta in the occupied states. When

(1) is minimized with respect to the deforma-
tion parameters, we obtain

op~. = —', It . =[o o o ]'~'R(u (i =x, y, z), (2)i i ' min xyz
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in which the A =A(5) are determined with the LD1' =+2 off-diagonal matrix elements of r'Y, o included.
If the wave functions were exact, the delta-function matrix elements would be independent of defor-
mation. ' We have used this fact to determine that in the expansion (5), states up to N = 2n+1 = 6 should
be included for the approximation to be reliable over the deformations of interest. We may express
the two-particle states I nP) in terms of the wave functions in the relative and c.m. coordinates, with
the transformation coefficients

B (5)= P (j 0 j 0 l&M)A A P( 1) (n l n l InlNL)[ ] [p]
nlSJNLJ a a 5 5 q q& aa bb

&a&b

&&([Ll] S IL[lS] ) ([l —,'] +[l 2] l[l 1 ] [—,'~] ), (6)

where q~ represents the (n l j ), and the angular-momentum and Moshinsky transformations are
defined a.s by Edmonds' and Brody and Moshinsky. s We shall consider the Kallio-Kolltveit (K-K)
potential which acts only in relative s states. Furthermore, we assume that the interaction does
not depend upon the local density, "perform the sum over the c.m. quantum numbers, and express
the matrix element as the sum over products,

(o.p I V I o.p) =

T~ /MT (

(-,'~ —,'m
I TM ) P [1-(-1) ]C

S+ r [~p]
7 7 b T «'S «'S'

nn S

of the radial integrals R«Ig and the geometric factor

,[ p] , ,[ p] ,[ p]
nn'S nlS NLJ n'f'SgNLJ' (8)

evaluated with / =E' = 0.
The deformation manifests itself directly

in the coefficients (8), but also in the radial
integrals which must be evaluated for each nu-
cleus and deformation at the value of h~(5) de-
termined by volume conservation [Eq. (4), Ref.
5]. The separation distances were determined
in each case for all n ~6, and their average
values used in evaluating the integrals. This
refinement proved unnecessary owing to the
fact that for n ~ 2, where the separation distanc-
es can increase rapidly with h~, the factors
(8) are already very small.

Representative results are illustrated in Fig. 2.
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! The dashed curves are for the interaction [0.865
+ 0.135cr,.o,]5(r,-r,) rescaled to give the sa.me
value as the K-K force at zero deformation.
The potential energies are relatively flat over
the region in which the kinetic energies decrease

FIG. 2. Kinetic and potential energies for represen-
tative eases drawn from the 4n nuclei. Total-energy
curves are left out to avoid cluttering, and only the
magnitude of the potential energy at zero deformation
is indicated. The scale is uniform with 1 MeV per divi-
sion. The dashed lines represent the delta-function in-
teraction. In Si the ground state is oblate but the to-
tal energy lies only 2 MeV lower than the prolate min-
imum; for the other nuclei shown here the difference
exceeds 5 MeV. The sequence of occupied single-par-
ticle states differs for the oblate and prolate shapes.
This leads to the difference in the potential energies
at zero deformation in Si
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sharply, and then increase until the wave func-
tions cease to be reliable. " The largest vari-
ation of the potential energy occurs for oblate
shapes, reflecting the more rapid increase
there in h&u(5). We find that, when the kinet-
ic energy predicts a large deformation, the
effect of the potential is to decrease 0 by about
0.1 and 0.15 for the prolate and oblate minima.
Taking account of the similarity of the K-K
curves to the deviations away from horizontal
of the delta curves indicates that this is an over-
estimate.

The result (b) in the introduction was deter-
mined by trying different sequences of level
filling. Note finally that we have not varied
kw for each nucleus.
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The results of two years of operation of a 1660-cps gravitational-wave detector are
reviewed. The possibility that some gravitational signals may have been observed can-
not completely be ruled out. New gravimeter-noise data enable us to place low limits
on gravitational radiation in the vicinity of the earth's normal modes near one cycle per
hour, implying an energy-density limit over a given detection mode smaller than that
needed to provide a closed universe.

Apparatus for measurement of the Riemann
tensor and search for gravitational radiation
was described some years ago. ' The space-
time derivatives of the gravitational potential
induce relative motion between part of an elas-
tic body. If the Riemann tensor has Fourier
components in the vicinity of elastic normal
modes of quadrupole symmetry, these modes

may be observed to have greater than thermal
energy. Utilization of resonance improves the
signal-to-noise ratio.

High-frequency detector operations. —A large
aluminum cylinder has been instrumented so
that its compressional mode in the vicinity of
1660 cps can be observed continuously with
sensitivity limited by the thermal fluctuations. '
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