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The lo garithmi c diver gen ce in the conduction—
electron —magnetic-impurity scattering ampli-
tude found by Kondo' suggested the possibility
of an instability in the system at sufficiently
low temperatures. Although Yosida' has indeed
found a bound state in a one-electron calcula-
tion directly analogous to the familiar Cooper
pair problem of superconductivity, it is not
clear how this is related to the actual many-
body problem. By using a particular trunca-
tion s cheme in the equations of motion for the
electron Green's functions, Nagaoka3 has dem-
onstrated that a many-body calculation can give
a bound state. Unfortunately, it is hard to make
an a priori justification of his truncation scheme.
On the other hand, Abrikosov, 4 using diagram-
atic perturbation theory, and Suhl, ' using Chew-
Low scattering theory, do not find a bound state
although these results appear to be valid only
to logarithmic accuracy. In this paper we in-
vestigate the ground state of this problem by
means of a many-body variational calculation
and show that for an antiferromagnetic s-d ex-
change interaction a bound state does exist.

The question of the interaction of the conduc-

tion electrons with a magnetic impurity is re-
lated to the basic question of the existence of
a localized moment on the magnetic impurity
atom. The latter problem has been discussed
in detail by Anderson7 and many others. The
antiferromagnetic s-4 exchange Hamiltonian
can be obtained di.rectly from the Anderson
localized impurity model' when the intra-atom-
ic Coulomb interaction, U, is large. Thus with
this model one is able to build in an inherent
symmetry between the electrons localized on
the impurity and those in the conduction band.
From this point of view a solution of the exchange
Hamiltonian is equivalent to a self-consistent
solution of the strongly correlated Anderson
Hamiltonian. We will therefore assume that
U is large (compared with the virtual level width)
and take as a starting point maximum corre-
lation for electrons of opposite spin when in
an impurity orbital. For simplicity we restrict
ourselves to a one-orbital impurity so that the
impurity is either spin up or spin down but nev-
er doubly occupied.

The Hamiltonian for a single magnetic impur-
ity in an electron gas is

where in terms of the above model
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The C and C+ operators obey the usual anticommutation relations, and the correlation restricts the

states such that
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In order to fix the sign of the off-diagonal matrix elements of the interaction we follow the example
of the BCS theory of superconductivity' and occupy the electron states in pairs. The most general
product wave function which does this is
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In writing the above we have omitted the possibility of triplet pairing as it will. be clear in the follow-
ing analysis that inclusion of such terms can never lead to a lowering of the energy since the strong-
ly correlated Anderson model demands antiferromagnetic J. The strong correlation [Eq. (8)J removes
from the above wave function those states involving products of more than one Cd+ operator, and we
also exclude products involving no impurity operator. The wave function appropriate for our mod-
el is
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where K is a normalization constant. The nor-
malization condition (as well as the condition
that there be a single impurity) is written

We normalize exactly by setting
and

1 (+ A.
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The energy of the system, obtained from Eqs.
(1) and (5), is then given by
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with the Lagrange multiplier, ~, determined
self-consistently from the normalization con-
dition, Eq. (8). Assuming J~ constant in a
square band of width 2D centered on the Fer-
mi surface and zero outside (the cutoff, D, phys-
ically results from the momentum dependence
of the interaction), one finds the following so-
lution for 6:

subject to the conditions that
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and the above normalization condition [Eq. (8)].
We reference all energies relative to the Fer-

mi energy and thereby automatically conserve
particles. Minimization of the energy subject
to the constraints leads to an integral equation
for a "gap" parameter, Ak, given by

where N(0) is the conduction-electron state den-
sity for a, single spin. Since A~(=b, ) is the pair-
ing energy for an electron in a particular k state,
to find the total condensation energy one must
evaluate the total energy for the single-impu-
rity problem [Eq. (9)]. The resulting energy
is

W= -A = —2N(0)62
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which is identical with the binding energy found

by Yosida in lowest order. However, there
are very important differences. Firstly, in
the present theory, the variational calculation
leads to symmetric pairing relative to the Fer-
mi surface. As a result of this, the electron-
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hole states considered by Yosida in his higher
order theory are partially contained in the above
ground-state wave function. Those parts of
the electron-hole states not included can be
added into the ground state via perturbation
theory without significant change in the ground-
state energy. " Secondly, since the finite con-
densation ener gy results from a str3ightforward
variational calculation using the full s-d exchange
Hamiltonian, the result may be considered a
proof of the existence of a condensed state for
this system in contrast to the results of Suhl'
and Abrikosov. 4 However, it must be noted
that although the Schrieffer-Wolff transforma-
tion and the variational calculation presented
here are straightforward, Suhl" has suggest-
ed that a singlet bound state is inconsistent with
a finite s-d exchange integral unless there are
explicitly spin-dependent forces in the problem.
In fact, such spin-dependent forces are always
present (e.g. , the spin-orbit interaction). Fur-
therrnore, the consideration of spin-flip scat-
tering from the many-body singlet is itself in-
consistent since the k state involved already
forms part of the singlet. One must instead
construct the appropriate quasiparticle excita-
tions for the problem and study these via scat-
tering theory.

The conduction-electron-impurity singlet
pairing function is given by

K T
B K

17
K 2N(0)[le I +K T ]'

K B K
which is shown in Fig. 1. It is noteworthy that
the pairing is formed from momentum states
rather far from the Fermi momentum [Ak - (K~TK/
EF)AF] whereas from a, kinetic energy argument
alone, one might expect to do better using pre-
dominantly k states closer to kF. This result
is physically reasonable if one thinks about the
problem of conduction-electron spin correla-
tion in real space rather than momentum space.
One clearly wants to introduce in position space
local singlet spin correlation and to do this re-
quires correlation in k states over a wide range
of k values.

We conclude that in this model the ground
state is a many-body singlet (spin compensat-
ed) bound state. We expect that above the char-
acteristic temperature, TK, this state will be
broken up„. however, as discussed by Schrief-
fer, "such a "phase transition" cannot be sharp
since the condensation involves a small num-
ber of degrees of freedom and so will be broad-
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ened by thermal fluctuations. An extension of
the above singlet-state calculation to finite tem-
perature is in progress.

If t'were ferromagnetic (8&0) we would find
a triplet bound state, but since ferromagnetic
J is fundamentally outside the Anderson strong-
ly correlated model, such a calculation is in-
consistent. One can get a net ferromagnetic
interaction by including, for example, direct
s-d exchange, in addition, in which case a trip-
let bound state would appear meaningful. Fi-
nally, as suggested above, one should be able
to obtain these results directly from the Ander-
son Hamiltonian using techniques similar to
those presented here.
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FIG. 1. The conduction-electron —impurity singlet
pairing function is shown as a function of momentum

[e&= (h k /2m)-ZF]. Note that the pairing occurs over
a relatively wide range of k states centered on the
Fermi surface in agreement with the localized nature
of the problem.
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Utilizing Shubnikov-de Haas measurements,
we have determined the Dingle temperature,
TD, as a function of ionized-impurity concen-
tration in Sb-doped gray tin. The results are
in good qualitative and quantitative agreement
with the predictions of the theory of ionized-
impurity scattering in a many-valley semicon-
ductor as developed by Robinson and Rodriguez. '
The quantitative agreement also confirms a
recent theoretical result of Brailsford' concern-
ing the relation of TD to the lifetime of a state
at the Fermi level.

The sudden appearance of Shubnikov-de Haas
oscillations when the electron concentration
in a many-valley semiconductor is increased
sufficiently to populate subsidiary minima was
first observed by Becker and Fan3 in Te-doped
GaSb. In this material the conduction band is
characterized by an absolute minimum at the
Brillouin-zone center and subsidiary minima
at the L points. The central-valley electrons
have a small effective mass while the (111)val-
leys have a relatively high density of states.
Robinson and Rodriguez proposed that the seem-
ingly anomalous concentration dependence of
the oscillatory amplitude could be explained
in terms of the screening of ionized impurities
by the heavy (111)e1ectrons. They showed that
as the carrier concentration is increased, the
screening length decreases abruptly when the
Fermi level reaches the subsidiary minima;
the resulting increase in lifetime of the k= 0
electrons causes the oscillation amplitude to
increase by orders of magnitude. Unfortunate-
ly, a direct quantitative comparison of this the-
ory with the original and subsequent' experi-
mental results on GaSb is not possible because
the experimentally determined nonthermal broad-
ening temperature T' is inherently different
from the calculated TD. While both measure

the effect of Landau-level broadening on the
amplitude of de Haas-van Alphen-type oscil-
lations, the broadening involved in TD is only
that due to ionized-impurity scattering, where-
as T' may involve, in addition, broadening due
to neutral-impurity scattering and also that
due to sample inhomogeneity.

Another material suitable for the investiga, —

tion of screening-enhanced oscillations is gray
tin. Its conduction band is very similar to that
of GaSb with respect to the band-edge separa-
tion and to the ratio of heavy-to-light electron
effective masses. '~6 The absolute effective mass-
es are somewhat smaller in gray tin and the
correspondingly lower density of states in the
central valley leads to a lower critical concen-
tration. Apart from these similarities and mi-
nor differences, gray tin offers two distinct
advantages for the investigation of the screen-
ing effect. Absence of intervalley scattering
in an elemental semiconductor should result
in a more pronounced effect and also permits
the use of a simplified expression for the life-
tirne. ' Secondly, because donor ionization is
complete, the results are not complicated by
neutral-impurity scattering.

In view of this favorable situation, we have
extended the previous Shubnikov-de Haas mea-
surements to Sb-doped specimens in the broad
concentration range from 7&& 10" to 7~ 10' cm
Samples of high homogeneity were prepared
by zone leveling suitable alloyed white -tin fila-
ments which were then transformed to the gray
phase. Etching revealed single-crystal seg-
ments which were s ele cted for measurement.
The measurements were made using rnagnet-
ic field modulation and phase-sensitive detec-
tion at twice the modulation frequency. Figure
1 shows the X-Y recorder trace of the oscil-
lations at 1.33 K in a sample containing 2.5
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