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Certain weak amplitudes exhibit non-Regge-
type behavior. These amplitudes have fixed
poles in the complex angular-momentum plane
which have the dual property of allowing a sum
rule of the Dashen-Gell-Mann-Fubini" type
to hold, although one might naively expect a
superconvergence relation' for this amplitude,
and of insuring that spin-one particle poles
are reproduced in the left-hand side of the sum
rule correctly.

We consider the covariant scattering arnpli-
tude T (s, t, ql', q2') for the process

yq +1TPI yq + 7TP2,

in the notation of Jacob and Wick. ~

(3) Its absorptive part in the s channel, A,
enters into the Dashen-Gell-Mann-Fubini sum
rule, "derived as a consequence of local com-
mutation relations between the time component
of the current densit&es V&(x) coupling to the
photons,

fds a (s, t, q, ', q, ') = G(t),

where G(t) is the coefficient of P& in the ver-
tex (&p, l Vp(0) l~p, ).

The amplitude T possesses a partial-wave
expansion in the t channel'.

where yq& represents an isovector photon1, pof four-momentum qy& and polarization index

p, and mp represents a pion of four-momen-
tum pl&. The variables s and t are given by

s =(p, +q, )', t = (p, -p,)'.

(4)T(z, t) = 5~ e (r )(2J+1)F (t),
J=2

where the partial-wave amplitudes F~(t) are
given for sufficiently large J by the Froissart-
Gribov formula

We have supressed isospin indices, since we
shall always be dealing with isospin 1 in the
t channel 7t +m -y+y. The amplitude T» may
be expanded in the form

T =TP P+ ~ ~ ~

pv p, v
(2)

For our purposes, the essential behavior of
the eJ and CJ's are

where

.'(P +P2)-1

J 1

cc (J' 1) Q + ~ ~ ~ ~
20 J-2 (6b)

and the nine omitted covariants are no more
than linear in P&. The invariant amplitude T
has the following properties:

(1) It is odd under s —u crossing.
(2) It is proportional to a single helicity am-

plitude in the t channel, to wit,

(sin 6 )T —f (8 )

Thus we are led to the following further prop-
erties:

(4) The point J=1 corresponds to a sense-
nonsense' transition in the channel y+y -7t +p.
This refers to the fact that the helicity ampli-
tude f. . ., is a transition from a two-pho-
ton state with total z component of spin equal
to 2 in the center of mass and so cannot obtain
a contribution from an intermediate state of
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spin less than 2. This has the immediate con-
sequence that the amplitude T does not have
a pole at t =mp' arising from an intermediate
p-meson state.

(5) We may compute the asymptotic behavior
of T and A from the exchange of a trajectory
in the t channel. We have in I"J a term of the
form

where we have kept the factor of (J-1)'~' from
Eq. (6b) since we will later be particularly in-
terested in the point J= 1. According to the
usual assumptions of Regge theory, P(J, t) is
nonsingular. Now putting this in Eq. (4) and

using the usual Sommerfeld-Watson contour,
we obtain the high-s behavior of T(s, t) as

~(t) I ~ (t) —I]tl [~(t), t](-S)
sinn o. (t)

(8)

The factor a(t)[a(t)-I] comes from differen-
tiating the P~(t) in Eq. (6a) and is character-
istic of a sense-nonsense transition since it
insures that T(s, t) does not have a pole at t
=m&', where a&(t) = l. [We have not kept the
signature factors explicitly. The p trajectory
has negative signature and so does contribute
to the odd crossing-symmetric amplitude T.
The signature factor of 1-e ~~(t) does not
remove the unphysical pole at a(t) =1; the fac-
tor n(t)-I is necessary for this. ]

We compute the asymptotic part of the absorp-
tive part A(s, t) from Eq. (8),

(10)

then for a(t) &1 we have

lim (-s)T(s, t) = fds'A(s', t) =0,

so that Regge asymptotic behavior coming from
the usual moving poles is inconsistent with

Eq. (3). In fact, we can easily see what demands

the sum rule places on the analytic properties
of FJ in the J plane by observing from Eqs. (5)
and (6b) that FJ has a pole at J = 1 arising from
the pole in QJ 2 when J-2=-1. Since the res-
idue of the pole of QJ at negative integral J'

is proportional to PJ+ 1, we have

lim (J-1)F (t) = f dz A(z, t)
t t'J-1

2 2- Jds'A(s', t, q, q ). (12)

=m 2) due to the asymptotic form Eq. (9). How-
p

ever, we see that although the integral does
indeed diverge, the left-hand side of Eq. (3)
does not develop the p pole because of the sense-
nonsense factor of o, (t)-1 which cancels the
I/[o, (t)-1] from the integration. It is not pos-
sible to say that the [n(t)-I] factor is not pres-
ent in Eq. (9), since it is certainly needed in
Eq. (8) to prevent the appearance of the unphys-
ical pole at m '.

(2) The asymptotic forms of Eqs. (8) and (9)
imply that A(s, t) is a superconvergent ampli-
tude. That is, if we write an unsubtracted dis-
persion relation in s, which should be valid

for n(t)&2,

T(s, t) = fds'A(s', t)/(s' s), —

A(s, t) ~(t)[~(t)-1]So. (t)-2
(9)

We now wish to establish the range of the
variable t for which Eqs. (3), (8), and (9) are
valid. Equation (3) is originally derived for
t, q, ', and q,

' spacelike. " However, it is a
relation between analytic functions and can pre-
sumably be continued to timelike values of the
variables. As soon as we admit this possibil-
ity, however, we find certain puzzling features:

(1) The function G(t) has a pole at t =m&' from
p exchange. The absorptive part A(s, t) does
not have this pole, and it has been suggested
by Fubini' and Fubini and Segre' that the left-
hand side of Eq. (3) develops this pole because
the integral diverges when n(t) =1 (i.e., at t

So the existence of the nonzero right-hand side
of Eq. (3) implies the existence of a fixed pole
of FJ(t) in the J plane with the vertex G(t) as
residue, if the sum rule and Froissart-Gribov
continuation are simultaneously valid in a com-
mon region of t, while alternatively, the super-
convergence relation Eq. (11) is exactly the
condition that the residue of the fixed pole van-
ish.

In order to check whether there is such a
pole in the J plane with the proper connection
to the vertex, we have considered a simple
model of pions interacting strongly with sca-
lar, isoscalar mesons. We shall give the de-
tails of the calculation elsewhere and here give
only the relevant results. The amplitude T»
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satisfies
(

d'k

„(ql, q2, t I, u2) = (ql, q2, P I, O2) +
J (2 )

[q, q, k+-'. (t O-), k-2(t -O )]M[2(e -OI)-k, ~2(f -O2)-k, el, e2]

f[k +-,'(P, -P, )]'-m') ([k--', (P,-P,)]'—m') (13)

where M(k„k„f&„P,) is the m-m scattering amplitude and I» is the Bethe-Salpeter irreducible ker-
nel. Projecting the coefficient of P P~ from Eq. 13 and decomposing T and I into partial waves
in the i channel according to Eq. (14, we obtain, in the center of mass,

J JF (t ~ ~ ~" ~ ~ )=I (t ~ ~ ~ ~ ~ )

where we have written

0 J 00" 2 K 2 I (t; ",KK)M (tKK; ")
4P3 P [ K2 2 ~ (KO+ ltl/2)st][ K2 2+ (KO ltl/gt)2]r (14)

k =(K, K'), P =(P, p'),

and the unspecified variables are the relative momentum and energy in the initial and final states.
MJ is the usual t-channel partial-wave amplitude for m-m scattering. Equation (14) may be contin-
ued to complex J using Eq. (5), its analog for I, and the familair Froissart-Gribov continuation for

In lowest order
4 4

s -rn + is M-m +i E

so that in this order I~ has a pole at J= 1 coming from the pole of Qg 2. We have studied some high-
er order contributions to I and find they are analytic at J=1; we speculate that this is true in gen-
eral, so that the residue of the pole of the exact kernel at J= 1 may be computed from Eq. (15). In-
serting this residue in Eq. (14), we find

J 0 2 &K~
lim (J-1)F (t; ~ ~ ~ )-2 1+, dK K dK~ —

~4~', ~P)

(16)

I d k 2k M[/ , tg, ~2(p p ) kg 2-(p --p )-k]
G (a, O )=(O +O ) +2' 1 1 2 p J (2vr) ([k z+(pl p2]' m-) f[k —2(pl p,-)]'-m—') '

M (t;K, K; ~ ~ ~ )
[-K'—m'+ (K' + t""/m )'][—K'-m'+ (K' -f' '/m)'] '

where we have assumed, of course, that the ~-m amplitude has only moving poles (we take the lim-
it with t in a region where M is analytic at 4=1). The right-hand side of Eq. (16) is the Bethe-Sal-
peter equation (without approximation) for the vertex function G(t), since the matrix element G&
=(mp I V&(0) Imp ) satisfies

and the coefficient of P& of this equation, in
the center of mass, is precisely the right-hand
side of Eq. (16).

So we see that for this model we indeed have
a fixed pole of I'"J at J= 1. The residue of this
pole is precisely the pion form factor, and the
Fubini sum rule, Eq. (3), is an integral expres-
sion of this fact. From Eq. (14) we see that
EJ also has the moving J-plane poles which
contribute to the m-m amplitude.

We now show that the fixed J pole has the

following consequences:
(1) It does not lead to a physical pole in T

in the t variable at o. (t) = 1.
(2) It does not contribute to the asymptotic

behavior of the absorptive part' (so that the
latter is still proportional to s+(t) ).

(3) It contributes an asymptotic term of the
form G(t)/s to the amplitude T.

(4) It allows the left-hand side of Eq. (3) to di-
verge as one approaches the p pole from small t.
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We rewrite Eq. (7) as"

F (t) cc p'(J, t)(J'-1) /[J-o. (t)](J-1),J

where P'(J', t) is nonsingular. We then obtain
from Eq. (4)

T(s, t) ~p'[o. (t), t]a(t)(-s) /sin a(t)
a (t)-2

-p'(1, t)a(t)(-s) /[l-a(t)]w. (19)

Equation (19) exhibits the asymptotic behavior
1/s for o. (t) & 1, and its absorptive part has
the form

(20)

since the second term in Eq. (19) is real. We
note the absence of the factor of o (t)-1 in Eq. (20)
as compared with Eq. (9). Thus the fixed pole
at J'=1 allows the left-hand side of Eq. (3) to
develop a pole" for a(t) =1, i.e., t=m&'. The
reason for this difference is easy to see from
Eq. (19). Without the second term, T(s, t) would

have a pole at t =m&' unless there were a fac-
tor a(t)-1 to remove it. In Eq. (19), however,
this pole is removed by the pole of the second
term at t =m&' which has an equal and opposite
residue to the Regge pole and is a reflection
of the fixed pole at J=1. Once the leading tra-
jectory passes to the right of J=1, the ampli-
tude will again be Regge-type in the sense that
the asymptotic behavior of both T and A will
be controlled by n(I). Of course, the sense-
nonsense behavior of the absorptive part as
z - 1 from above is still anomalous.

Our conclusions are that current-algebra
sum rules for weak amplitudes and pure Regge
behavior are incompatible if they both are to
hold simultaneously in a region of t. Our study
of a model for which Eq. (3) is true and which
has a continuation in the complex J plane leads
us to conclude that these amplitudes have a
fixed pole at J=1. This pole holds up the asymp-
totic behavior of the full amplitude (s ' rath-
er than s~( ) 2), although the s channel absorp-
tive part has normal Regge asymptotic behav-
ior. This is necessary since we have established
that A does not satisfy a superconvergence re-
lation. Finally, the fixed pole does not contrib-
ute spurious poles in the t variable to the am-
plitude since this pole exactly cancels the Regge
pole itself at the sense-nonsense point.

It is interesting that the non-Regge behavior

we have found applies to an amplitude that is
not directly measurable, i.e. , scattering of
charged photons. Our arguments specifically
do not apply to the scattering of real photons,
nor in their present form to the photoproduc-
tion of e, p or p, +, p, since in the latter case
there are extra amplitudes present which can-
not be analyzed in terms of two-body processes.
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After completion of this paper, we were in-
formed that the importance of the fixed pole
at J=1 has also been noted by V. Singh.
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We mean by "irreducible kernel" that I&& cannot be
split into two disconnected parts, with the external
pion lines in one part and the currents in the other, by
cutting two internal pion lines.

~It has been observed by K. Bardakci, M. Halpern,
and G. Segre (to be published) that the large-s behav-
ior of T, demanded by Eq. (3), prevents T from Regge-
izing. They have speculated that A(s, t) does Reggeize,
as we have found.

oIt is possible that there may be other singularities
of E in J arising from the integration in Eq. (14l. We
have verified that no such singularities arise in the lad-
der approximation to M~, at least for ReJ &2.

In particular, the asymptotic behavior of Eq. (20) in-
sures that the sum rule is valid until t =m& .
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