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=22iqV;6(F-%;), introducing the usual notations
for the Dirac 6 function, space coordinate vec-
tor T, and particle p051t10n vector r7 The con-
servation relation, V- J+p= 0, is satisfied;

a dot over a variable here indicates partial
differentiation with respect to time £.

The mechanical momentum of a particle is
P=mv(l—v?/c?)~V2= E—q:&/c, for canonical
momentum p. The Lagrangian yields, for the
force on particle ¢,

dB Jdt=—q & Jc—q T v./c)x (V. xA
P/ 9,8,/c=a,V @+ @yv,/c)x(V xA). (3a)
We shall set this equal to
- - NS (o3 -
eZ.Ez.+gz.BZ.+(eZ.vZ./c) Bi (givi/C)XEi’ (3b)

assuming that each particle has an electric
charge ¢; and a magnetic pole strength (or mag-
netic charge) g;. E is the electric field vector,
and subscript ¢ indicates values taken for (or

at) particlei. Equations (3) yield
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A consistent description of the electromag-
netic f1eld requlres the relation of the field
vectors E and B to the potentials A and @to
be independent of the magnitude of charges act-
ed upon in Egs. (3) and (4). This condition is
satisfied here if and only if the ratio ¢/g is the
same for all particles under consideration (i.e.,
a constant of the system). Assuming this is

true, it is convenient to let g = (% +g%)"2

ing

, giv-

B= (/q)V xA~(g/0)A/c + V@), (52)
E= —(e/q)(X/HV@)—(g/q)VXX. (5b)

B and E of Egs. (5) satisfy Maxwell’s equations,
noting that the electric charge density is ep/q
and the magnetic charge density is gp/q in the
generalized equations.

The constancy:of e/g assures that qzq ejej
+g;g;, as would be expected, assuming that
the potential energies of electric and magnet-
ic interaction are additive, thus leading to the
correct form of the system Hamiltonian in Cou-
lomb gauge. The restriction to constant e/g
is very severe, but allows continuous transi-
tion from the extreme of pure electric charg-
es to the extreme of pure magnetic poles. Let-
ting g/e =K, the quantum condition eg =7cn,
for integer n, yields

= (Hen/K)Y?; g=(HcenK)Y3, (6)

K must be assumed constant for all particles
of the system, butz can be a different integer
for different particles.

This generalization goes farther than the ob—
vious reversal of roles between B and —E
Egs. (5) or the generalized Maxwell equatmns,
when electric charge is replaced by magnetic
charge, but it does not appear to provide a clue
to an entirely satisfactory treatment of the prob-
lem of the potentials in quantum mechanics.
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The problem of calculating the electromag-
netic mass differences® within a given hadron
multiplet has proved to be very difficult. Or-
dinarily, they are computed either by a straight-
forward perturbation method or some modifi-
cation of such methods. These calculations
usually involve difficulties with ultraviolet di-
vergences, thus necessitating an introduction
of a cutoff because of our ignorance of the high-
energy behavior. We shall call such methods
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low -energy approaches, since the low-energy
region rather than the high-energy one is ex-
pected to be more important. However, the
appearance of divergences casts doubts upon
their validity. Recently, Harari® has given

a rather convincing argument on the basis of
a dispersion theory showing that we can prob-
ably compute the mass difference due to A7=2
electromagnetic effects by these conventional
methods, but that it is not possible to do so
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for AI=1 parts since then an additional unknown
subtraction constant is needed in the dispersion
integral. This suggests (at least for the A7=1
part) that the contribution from the high-en-
ergy region is the most important for the elec-
tromagnetic mass differences of hadrons. We
shall call such an assumption a high-energy
approach in contrast to the previous low-ener-
gy approach. Although the truth may be some-
where in the middle, we shall assume the high-
energy approach as our model in this paper.
This approach will lead us to a Reggeized tad-
pole model. In this way, we can explain rough-
ly all the mass differences among hadrons,
including a curious, hitherto unnoticed fact®
that a particle in a given isomultiplet with more
electric charge has a smaller mass compared
to others with less electric charges. Actual-
ly, an exception to this rule is the pion (and
possibly the p meson), but we can also explain
the reason for this apparent exception by our
model.

Let us consider the case of baryons. The
electromagnetic self-energy is given by"‘

=€ Dol a, p2_sey—1
om=- mfdk(k —i€)"U(k, p),

1,p)=Ja'% ™ 01 G2 (30, 19). 1)

Note that I(%,p) is proportional? to the scatter-
ing amplitude of a virtual photon with the mo-
mentum & by the baryon. The high-energy as-
sumption implies that the above integral is dom-
inated by contributions from large k. In this
case, according to the Riemann-Lebesgue lem-
ma on the Fourier integral, only the singular
parts of the time-ordered product in I(k,p) are
important. It is possible to rewrite® I(k,p) as
an integral involving a retarded commutator
instead of the time-ordered product. In that
case, the singularity is concentrated on the
light cone x2=0. In a previous paper,® it was
demonstrated that such a singularity represents
an exchange of Regge trajectories. Indeed,

in that way, we derived many sum rules like
the Barger-Rubin relation.” At any rate, the
most important contribution from the high-en-
ergy part in this model comes from exchang-
es of Reggeized particles between the photon
and the hadron. Diagramatically, this is equiv-
alent to considering Reggeized tadpole diagrams.®
Now, for our case, only the R trajectory be-
longing to the 2% tensor nonet with the charge-

conjugation parity +1 and with unit isospin can
contribute to the electromagnetic mass split-
tings. Hence, we predict that the electromag-
netic mass difference 6m must be dominantly
isovector, with its magnitude proportional to
the coupling constant y of the R trajectory with
the hadron. Experimentally, y has the same
sign for all hadrons. This may be due to a pos-
sible existence of universal couplings of the

2" tensor nonet with all hadrons as has been
conjectured by some authors.® Now we can
explain the curious experimental fact® that a
particle with less electric charge is heavier

in a given isomultiplet. This rule applies even
to isobars like N* and Y,*. The pion, howev-
er, is an apparent exception to this rule. As
has been noted by Coleman and Glashow,® this
is not really serious but actually welcome since
we have to compare the large (K°?-(X*)? with
small (7°)2—(z*)?, where K*+° and %" repre-
sent masses of these particles. Also, the ex-
perimental violation of the resulting equal-mass
spacing rule £~ -2°=32°-3% is not so large

and may be explainable as a correction due

to the A7=2 part of the electromagnetic inter-

action.
Now, in our model, we have
n—
"L aey (F+a),
E—_zozzo_z-#-:a .f

) > N7
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where f (and d with an additional condition f
+d=1) is a coefficient of the f-type coupling
of the 2* tensor nonet to the baryon octet. Sim-
ilarly, vy is a dimensionless residue of the
coupling as is customarily defined in the or-
dinary Regge theory®!° and « is a dimension-
less constant proportional to the coupling of
the R trajectory with the photon. We have as-
sumed!! that the remaining multiplicative fac-
tor with the dimensions of mass for the expres-
sion in 6z may be taken to be the individual
baryon mass itself.

Analogously, for the pseudoscalar mesons,
we now find

KPPy, @R

y_N; KR —(KT) =

nz__pz O’ (3)

where v, is the dimensionless residue of the
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coupling between the 2% tensor nonet and the
pseudoscalar octet.

From the experimental analysis!® of high-
energy meson-baryon scattering data, it is
known that f/d = —(2.0+ 0.6). If we use the mid-
dle value f/d= -2.0 we obtain

]

n—p -zt ET-E°
N ° 2z 7

=1:2:3. 4)

Il

On the basis of this equation and the experimen-
tal value of n—-p =1.29 MeV, we compute =~
->*=6.79 MeV, and £~ -E°=5.62 MeV. These
numbers must be compared to the experimen-
tal values'? ©~-2%"=17.90 MeV and Z~=E°=7.0
MeV. The reason why the particular combina-
tion = -7 is chosen is because it represents
a pure AI=1 part. Note that the A7=2 inter-
action gives no effects to n—p and Z~ -E° mass
differences. We emphasize here that our Reg-
geized tadpole model takes account of high-en-

ergy contributions from many Feynman diagrams,

in contrast to the conventional tadpole model.8
The experimentally nonvanishing A7=2 differ-
ence ZT+27-22°=1.7 MeV is small compared

to 27-2*=17.9 MeV and must be attributed to
the A7=2 interaction, together with the 7, -7+
mass difference.

As for the kaon-mass splitting, we have ex-
perimentally®®

v/ Ty 2115/ (171 .5).

Unfortunately the error is very large, but if
the middle value yy;/vn=1.58 is tentatively
chosen, Eq. (3) yields K,~K+=4.3 MeV which
is to be compared to the experimental value

of 3.9 MeV. On the other hand, if universali-
ty® is assumed to set yy; =y we predict K,—K,
=2.72 MeV which is a bit smaller. It is desir-
able to have a more accurate experimental de-
termination for this value, although we can
roughly explain the sign and magnitude of K,
—-K, by the present data.

So far, experimental values for f/d and vy;/
vy ratios have been used. However, if we use
the idea originated by Cabibbo, Horwitz, and
Ne’eman,'® these ratios can be computed the-
oretically. Translating their idea for our case,
we postulate that the coupling between the R
trajectory and the hadron is proportional to
the matrix element of the scalar density oper-
ator u,'~u,% between two hadron states. If we
further assume that «,® is the medium-strong
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SU(3)-violating interaction, then we compute

2 E-A
fld= =3 sp~-21
and
‘)/_M.:i n—n I_{.'\‘ 1 33
Er N
YN 4 N

as has been noted in the previous paper.® These
values are quite near the ones we have used.

A similar method is applicable to compute the
coupling constant ya to obtain

N** _N*++ _ Yl* _N* M
) ==X N°

This formula together with the conventional
SU(3) results!® leads to E*x—=5E*0= N*+—N*++
=Y ,*°-Y *+=2.14 MeV and N*~-N*++=6.42
MeV, which are not incompatible with the pres-
ent experimental values.'? Similarly, we pre-
dict that K*°—K*+=1.5 MeV and p*-p°=0.

As has been stated in the beginning, our mod-
el may be a little over-simplified in spite of
its successes.. Probably, we should still take
account of contributions from a few convention-
al Feynman diagrams in addition to our Reg-
geized tadpole diagram. The situation is then
very similar to the conventional tadpole mod-
el.? This problem will be treated elsewhere.
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The 7—p charge exchange (CEX) reaction,
m~ +p —1°+n, at high energies is a particular-
ly simple reaction from the standpoint of Reg-
ge-pole phenomenology because only the quan-
tum numbers of the p may be exchanged in the
crossed channel, £. The domination of the scat-
tering amplitude by a single p Regge trajectory
is verified by several analyses'~® of the differ-
ential cross section, do/dt.*"® If this domin-
ation were complete and only the p contributed,
one would expect to observe zero polarization
because the Regge flip and nonflip amplitudes
have the same phase. The detection of a non-
zero polarization by Bonamy et al.” shows that
another term which went undetected in the mea-
surement of do/dt is also contributing to the
scattering amplitude.

It was shown®® that a qualitative explanation
of the polarization can be obtained by assum-
ing that this extra term is due to resonance
exchange in the direct channel, s. Alternative
explanations assume that the extra term aris-
es either from a cut!® or from a second p me-
son, the p’.!! We shall extend our previous
analysis® to the more recent 11.2-GeV data
and show that the quantitative agreement is
improved by the introduction of the p’. We shall
also review the growing evidence for the exis-
tence of a p’.

It was shown® that the direct-channel reso-
nances can affect the polarization at energies
as high as 20 GeV. While there is some ques-

tion as to the accuracy of the extrapolation of
the Breit-Wigner formula to energies consid-
erably above the resonances, we feel it is im-~
portant to include the resonance contributions.
We shall therefore consider the following three
models: (I) p+resonances, (II) p+p’+reso-
nances, (III) p+p’, and compare their agree-
ment with experiment. The third model is pre-
sented since there is some skepticism concern-
ing the contribution of the direct-channel res-
onances at energies above 6 GeV. The predic-
tion of the three models at different energies
will also be presented, thus providing an ex-
perimental test for distinguishing them.

Before we turn to this task, however, we
shall review the independent support (i.e., sup-
port from sources other than the mp CEX po-
larization) for the introduction of the p’. This
support comes from a variety of sources. The
first of these is a recent analysis of Hbgaasen
and Fischer!! of high-energy, nucleon-nucleon,
charge-exchange scattering where they show
the introduction of a p’ is necessary to obtain
a consistent Regge-pole description of the for-
ward differential cross section and the total
cross-section data. Evidence for the p’ aris-
es from two recent unitary symmetry analyses.
Nelson'? has constructed a mass operator for
the SU(3) harmonics which gives the correct
masses of the well-known 1~ nonet of mesons.
This operator also predicts a 1~ meson with
the quantum numbers of the p at 984 MeV. A
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