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the K? dependence still exists at 6=120°. With-
in the limits of error of our experiments, we
see that the linewidth appears to be proportion-
al to K2 up to #=90°. However, on closer ex-
amination, we note that the point at 6 =120°
lies above the empirical equation I' =7.03 X 10%K®
with K expressed in A=!., We now make use

of our scattering data from angular dissymme-
try measurements.’? If we take I? =324 A?
A=4T44 R, 7-1=(T-T,)/T(=1.20X10"%, we
find

I'=aK?[1+ (b/a)K?]
=6.32X10%K?(1 + 4.5 X 10*K?), (4)

where b/a=1/6(1-1). T and K are expressed
in kHz and A™!, respectively. Equation (4)
clearly fits our scattering data. Further work
is definitely indicated since we have only one
half-width at 8 =120° showing a measureable
deviation from the K? dependence. On the oth-
er hand, we are certain that Eq. (2), I'=aK?,
holds whenever the magnitude of correlation
is small and I" approaches zero as K approach-
es zero. At intermediate temperature distances,
where the effects of correlation may have to
be taken into account, we have some evidence
to show that Eq. (3) indeed agrees with exper-
iments.
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CONDENSATE TURBULENCE IN A WEAKLY COUPLED BOSON GAS*

Robert H. Kraichnan
Peterborough, New Hampshire
(Received 4 January 1967)

The ring-model approximation is applied to thermal equilibrium below the A-point, to
the relaxation of a chaotic condensate into the zero-momentum state, and to turbulent

counterflow of condensate and normal fluid.

This note reports some applications of quan-
tum-field correlation equations whose classi-
cal-field limit constitutes a statistical approx-
imation, along the lines of current turbulence
theory, for chaotic solutions of the Gross-Pi-
taevskii equation.! The quantum effects pre-
vent an ultraviolet catastrophe.

Assume the standard second-quantized Ham-
iltonian

H=2kqTq, +5 2 Vk_sqkTqPTqrqs (1)
k krs
(B+p=7r+s),
202

with V3, = |Vp| and #=2m =1. The correlation
equations, called the ring-model approxima-
tion® (RMA), predict the evolution of @p(t, ')

= (qkT(t’)qk(t» from an initial time. Here g(¢)
is the Heisenberg destruction operator and ()
denotes trace over a Gaussian initial-state en-
semble, which can be far from thermal equi-
librium. The structure of the approximation
is best exhibited by considering statistically
steady states and using the spectrum function
Q@) = (2m) TH @, (¢, t)etwE=)g(t—17). [All in-
tegrations will be over (—«, «).] After Fourier
transformation and some algebraic manipula-
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tion, the time-domain RMA equations (Ref. 2, Appendix B) yield

2nin(w) = [k2+w0—w +Fk(w)]_1, (2)
Q,(w) =216, (w) ;zyzs) Jawrdo1v,  (w-w")1%Q ), (@)@, (01Q (w), (3)

where
Fk(w) =§ fdw’Vk_.s(w—w’)Qs(w')—ZﬂiE Jfdwrdw™ | Vk_s(w—w”’) IzQp(w')Qy*"(w") Gs(w’”) (4)

(B+p=r+s, w+w =w"+w"),

Vq(w) = Vq/[l + Vqu(w)], (5)
Wq(w)=—2m’Z}pfdw'[(Gp(—w’))*Qp+q(w—w')—Qp(—w’)Gp+q(w—w')], (6)
Qk+(w) = Qk(w) +Bk(w), Bk(w) = Gk(w) + (Gk(w))*, (7

and wy= V,N, N =total number of particles. Gp(w) is an admittance function for mean response of
qk(t) to small perturbations, and V (w) is an effective matrix element. The mean occupancies are
Np, = [Qp(w)dw, and [B(w)dw=1. For (2)-(7) to represent a nonequilibrium steady state, external
coupling terms must be added which will not be examined explicitly here. The RMA equations also
yield

T,= 2712 Jffawawraw™ | V,_lw-e”) lZ[Bk(w)Bp(w’)Qr(w")Qs(w ")-B (w ”)Bs(w”’)Qk(w)Qp(w’)

+Bk(w)Qp(w’)Qy(w”)QS (w™) +Bp(w’)Qk (w)Qy(w ”)Qs (w™)

—Br(w”)Qk(w)Qp(w’)Qs (w ”’)—Bs(w”’)Qk(w)Qp(w’)Qr(w "] (8)

(B+p=7r+s, w+w' =w"+w™),

where T}, is the net contribution of the interaction to dNp/dt. In a nonequilibrium steady state, T}
is nonzero and is cancelled by contributions from external couplings.
In thermal equilibrium,?

Q,(@ =B, (/™7 %-1), o)

whence Tp=0. If V is weak and moderate ranged [ wg <1, (8))~'=x temperature; Vp/Vg=1 for
Byk? <1, =0 for Byk?> 1], (2)-(9) are soluble analytically for wg™" >8> B). They yield N-N, <N,

@ ~Bwy. Gplwg+w) couples significantly only to itself and (G_g(wp—w))*, and is evaluated as the so-
lution of a complex cubic. The solution gives

Bk(wo +w) =227 (W) [(w +23) /1w | (=) "2 (lwl >k kP« wo),

k2> w _but V zVO), (10)

2 L1 —-1(_ 1/2
Bk(w0+k +w)~2(ﬂw0) ( 1+4w0/w) (O<w<4w0, 0 i

where Bp, vanishes for w outside the stated limits. See Fig. 1 for f(w). For k-0, (10) gives By(w
+w) ~16(w) + 177 (w)/w. For k® < w,,

!Vk(w)lzz |w2=k*|/N? (Iwi<<w0),

zVOZ (|wl>>w0). (11)
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The correct equation corresponding to (10) is the phonon relation

Bk(wO +w)=[1+ (wO/Zwk)]G(w-—wk)—(wO/Zwk)é(w + wk), w

2 ~ _—
Bk(w0+k +w)=6(w-w

which is obtained, among other ways, by ex-
amining the response of the Gross-Pitaevskii
equation to perturbations of the ground state.®

Equation (10) gives a band spectrum whose
weights below and above the phonon frequency
are such that, used in (9), both (10) and (12)
give Np = (28k%) ™! (k* < w,), which is 3 the free-
boson value.* For k%> w;, both give [wBp(w)dw
~k®+2w,. Both give U,~w,N/2, Ep~B~* (k?
<wy), Ep=(k?+wq)/{exp[Bk®+wq)]-1} (B2> w,),
where the total energy is UOJ"ZkEk‘S This
U, equals the classical-field limit of the low-
er bound demonstrated for the eigenvalues of
the RMA model Hamiltonian.?

If @ is replaced by @ in (2)-(7) and the two
BBQQ terms are omitted in (8), the results
are the RMA for the Gross-Pitaevskii equation.
In this classical-field limit, (9) degenerates
to @p(w) =Bp(w)/(Bw=a) and there is an ultra-
violet catastrophe, which is independent of the
statistical approximation. Although the clas-
sical Gross-Pitaevskii equation gives Bp(w)
correctly, it gives an inadmissible equilibri-
um Qp(w) for pk?>1.

The cited results indicate satisfactory ther-
modynamic predictions for RMA in the 8 range
considered. Also, RMA gives expressions?
for the density components pg, and it is found
that the predicted suppression of density fluc-
tuations below free-particle levels has the cor-
rect strength and 2 dependence. These features
provide some motivation for trying the approx-
imation in nonequilibrium situations where Ny,
>1 for k? <w,.

Serious deficiencies in equilibrium show up

0 i
Jwl/wq 2 3

FIG. 1. The function f(w) which appears in Eq. (10).
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= k(2w0)1/2 FP<w,.),

k 0

0) (B2 > wo), (12)

for Bwy,>1. The predicted quantum depression
of ground-state energy below w,N/2 has the
correct magnitude, but the difference between
(10) and (12) is now thermodynamically signif-
icant. N is not given correctly for BTl<k?
<wy, and the specific heat is «<B™2 instead of
OCB-S/Z.

The behavior out of equilibrium can be inferred
from (8), whose right-hand side is a sum of
input and output terms from collisions, there-
by resembling the spectral-transfer expression
in analogous approximations for Navier-Stokes
turbulence.® If Np, Ny, Ny, Ng are all <1,
the BBQ® terms dominate and the right-hand
side looks like a Boltzmann collision integral.
If the N’s are >1, the BQQQ terms dominate,
and the extra factor @ implies enhanced tran-
sition rates.

Consider the supercooled initial state Np
=exp(a,—Bk?), where o, and B, are chosen to
give an eventual equilibrium N-Ny <N, w,™*
> > B, . Initially, most particles have k%> wg,
and V,(w) and By(w) are replaceable in (8) by
V, and 6(w-k%). The BBQQ terms cancel, but
the BQQQ terms increase occupancies at low
and high % at the expense of intermediate %.
This leads to a first stage of condensation where
a number of particles approximating the even-
tual equilibrium N, have concentrated into a
region k& Sk, with w,<«<k,?<«< B~ In this stage,
k4 shrinks with a halving time ~2,%/w,? and the
shrinking is dominated by processes local in
momentum (k, p,7,s ~kx). The N}, for k>,
are very nearly in thermal equilibrium among
themselves.

After k,%=w, is reached, the deviation of
Vip(w) and Bp(w) from free-particle values be-

comes important. Although Vk(w) has not its
equilibrium form, the essential behavior is
indicated by (11). The high % continue to be
nearly in internal equilibrium, but at o and

B slightly different from the eventual values

and such that net scattering out of 2 <k, from
collisions with the high-k particles is very small.
The shrinking remains dominated by local in-
teractions k,p, »,s ~k4. For these, w~k4® typ-
ically, and |Vj(w)|~w/N, which is independent
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of V,. Consequently, the halving time for &,
is now ~k4 2. There is a transition region %
>ky, analogous to the inertial range in Navier-
Stokes turbulence, through which the Kkinetic
energy squeezed from the collapsing conden-
sate is passed up to high 2. Analysis of (8) gives
Ny, ock~13/3 here, provided k4 is small enough
that k% <w, throughout the range. After k2,2~ w,
is passed, the total time for attaining the equi-
librium condensate (Ny~N) is ~L? (~mL?/h in
ordinary units), where L is the cyclic-box side.
The maximum propagation speed of conden-
sate phase under the exact Hamiltonian is plau-
sibly the phonon speed. But that is not direct-
ly relevant to relaxation into equilibrium. What
counts is the rate at which phase disturbances
dissipate. The RMA halving time k2,2 for k,2
< w, is the typical time both for evolution of
incompressible Navier-Stokes turbulence of
velocity 24 and eddy size 24~' and for nonlin-
ear distortion of a sound wave of wave number
ks and particle velocity k4. The behavior of
Vk(w) at low & can be shown to be associated
with suppression of density fluctuations in the
chaotic condensate, and its independence on

V, corresponds to the independence of low-Mach-

number nonlinear effects in a Navier-Stokes
fluid on the value of the compressibility.

If a dilute gas of foreign particles is coupled
to the bosons with an infinitesimal potential
€Vy, RMA gives an effective matrix element
€| Vq(w) | for scattering with momentum trans-
fer ¢ and energy transfer w. Equation (11) then
indicates anomalously low cross sections for
small ¢ and w, and suggests anomalously low
mutual friction effects.

A crude model of turbulent counterflow is
obtained by interrupting the condensation pro-
cess when k,% <« w, and displacing the normal
fluid (¢ >&,) by a drift momentum g < w,*’3;

i.e., N, ~Np ,, for k>k,. The immediate ef-
fect found from (8) is a rapid loss of particles
from k <k to r,s ~w,’?. However, the region
k> q quickly adjusts to an altered state of near
internal equilibrium, as in the isotropic con-
densation, so that this loss becomes small.”
The indicated steady state (with appropriate
external couplings to maintain the drift) has

a skewed condensate with 24~¢ and a particle
exchange between k <ky and & >k 4 which is dom-
inated by local interactions and characterized
by the turnover time k4, 2. The typical unbal-
ance in momentum transfer across the skewed
condensate is ~¢, and the net rate of momen-

tum exchange between k <k, and k >k, (mutu-
al friction) is therefore ~¢® per condensate par-
ticle [~¢®/(mh) in ordinary units].

The relation to the similar mutual friction
found by Vinen® for He II is uncertain. The
true behavior of a weakly coupled gas, in which
the kinetic energy of a typical normal-fluid
particle greatly exceeds the energy penalty
for knocking a condensate particle out of a cor-
related state, may be quite different from He II.
Moreover, the excitations predicted by RMA
are specified only by spectra, and it is fanci-
ful to think of them as vortices or other defi-
nite structures whose form implies highly or-
ganized phase relations among many wave vec-
tors. But it is significant that a statistical ap-
proximation at this level of crudity yields an
anomalously low mutual friction. The RMA
equations for L =« do not appear to give a crit-
ical velocity below which mutual friction dis-
appears.

The mean condensate amplitude (y(x)) is ze-
ro in all the analysis reported above; the ini-
tial ensembles are Gaussian and all eventual
phases are equally probable. RMA can be ex-
tended to nonzero-mean ensembles in the way
that analogous statistical equations for Navier-
Stokes turbulence are extensible to flows with
mean velocities.® The resulting equation for
(d(x)) is the Gross-Pitaevskii equation augment-
ed by terms expressing coupling to the second-
quantized fluctuations, the latter being speci-
fied by @ and G functions. These terms are
somewhat analogous to the viscous terms in
the Navier-Stokes equation and prevent an ul-
traviolet catastrophe. An essential prerequi-
site to the extension is that the zero-mean RMA
equations do give the correct classical-field
ground-state energy 3w N. Applied to the re-
laxation of a chaotic condensate, or to turbu-
lent counterflow, the difference between zero-
mean and nonzero-mean equations is like that
between treating the velocity field by statisti-
cal approximation in homogeneous Navier-Stokes
turbulence and integrating the Navier-Stokes
equation forward in time point-to-point from
a turbulent initial condition. The latter pro-
cedure is more accurate but can require enor-
mously more computation. The nonzero-mean
equations appear to give correct equilibrium
thermodynamics for Bw,>1 and give correct
phonon frequencies. The zero-mean equations
may be useful principally in describing conden-
sate turbulence, where faithful reproduction
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of phonon behavior is unimportant.
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EXPERIMENTAL TESTS OF THE CRITICAL-STATE
MODEL FOR HYSTERETIC SUPERCONDUCTORS*

Donald G. Schweitzer and M. Garber
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New types of experiments which provide direct checks of the critical-state model of
hysteresis in type-II superconductors are described. The observed behavior cannot be

accounted for by the critical-state concept.

Discussions of the hysteretic behavior of type-
II superconductors are usually based on the
critical-state model. An example of the way
in which calculations of the magnetization curves
are made using this model is given in the pa-
per of Fietz et al.' (We also refer the reader
to this paper for references to the work of Bean
and Kim and their co-workers.) In the simplest
version of the model a maximum or critical
current of constant magnitude J, flows every-
where in the sample upon removal of a field
greater than H 5. In practice, it has always
been necessary in studies such as those of Ref.
1 to assume some functional dependence of
Jc on the internal field B in order to deduce
the observed magnetization curves. This pro-
cedure appears to us to preclude a direct ex-
perimental check of the critical-state hypoth-
esis, which is assumed a priori as the basis
of the calculation of Je (B). In this paper we
wish to describe a number of new experimen-
tal measurements which do provide such a di-
rect check on the critical-state model. The
results presented here concern the behavior
of the remanent magnetic moment or trapped
flux in zero external field with temperature
and transport current. We shall also summa-
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rize how the magnetization in a field changes
in the presence of applied transport currents.
We shall refer to the zero-field remanent mag-
netization as tf.

Flux penetration of a long sample in a par-
allel external field H begins when H =Hcl'
Starting with an initially unmagnetized sample
at some temperature Tl <Tc, the application
and removal of any field greater than H .y re-
sults in a corresponding tf. The quantity of
tf increases as the field is increased from H ;
to a value H’ (which corresponds to 2H* in the
Bean model®). At this field there is no further
increase in tf. (There often is a subsequent
decrease in tf for H 2H’, which we shall ignore
in the discussion of this paper. This point will
be discussed in a future paper.) Magnetiza-
tion cycles in which a field less than H’ is ap-
plied and removed we shall call minor hyster-
esis loops, and cycles corresponding to H 2H’,
the major hysteresis loop. A basic feature
of the critical-state model is the assertion that
the local macroscopic current density is every-
where equal to +J., or 0. Thus, the tf result-
ing after cycling through a minor hysteresis
loop (tf, )i 0r) 1S associated, according to this
model, with an inner core in which no current



