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= 6.3 2 x 10'K' (1+4.5 x 10'K'), (4)

where b/a = i2/6(7-1). I' and K are expressed
in kHz and A ', respectively. Equation (4)
clearly fits our scattering data. Further work
is definitely indicated since we have only one
half-width at 8 = 120' showing a rneasureable
deviation from the K' dependence. On the oth-
er hand, we are certain that Eq. (2), I' =aK',
holds whenever the magnitude of correlation
is small and I' approaches zero as K approach-
es zero. At intermediate temperature distances,
where the effects of correlation may have to
be taken into account, we have some evidence
to show that Eq. (3) indeed agrees with exper-
iments.
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the K' dependence still exists at 8 =120'. With-
in the limits of error of our experiments, we
see that the linewidth appears to be proportion-
al to K' up to 8=90'. However, on closer ex-
amination, we note that the point at 8 = 120'
lies above the empirical equation I' = 7.03 &&10 K'

0
with E expressed in A '. We now make use
of our scattering data from angular dissymme-
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try measurements. " If we take l'=324 A'

X = 4744 A, w —1 = (T Tc)/—Tc ——1.20x 10, we
find

I' = aK2[l + (b/a)K2J
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CONDENSATE TURBULENCE IN A WEAKLY COUPLED BOSON GAS*

Robert H. Kraichnan
Peterborough, New Hampshire

(Received 4 January 1967)

The ring-model approximation is applied to thermal equilibrium below the A,-point, to
the relaxation of a chaotic condensate into the zero-momentum state, and to turbulent
counterflow of condensate and normal fluid.

This note reports some applications of quan-
turn-field correlation equations whose classi-
cal-field limit constitutes a statistical approx-
imation, along the lines of current turbulence
theory, for chaotic solutions of the Gross-Pi-
taevskii equation. ' The quantum effects pre-
vent an ultraviolet catastrophe.

Assume the standard second-quantized Ham-
iltonian

&=Pk~q ~q + —,
' Q V q tq ~q qk k k-sk p rs

k krs

(k+p = r+s),
202

with Vk =
i Vk I and 8 = 2m = 1. The correlation

equations, called the ring-model approxima-
tion' (RMA), predict the evolution of Qk(t, t')
=(qkt(t')qk(t)) from an initial time. Here qk(t)
is the Heisenberg destruction operator and ()
denotes trace over a Gaussian initial-state en-
semble, which can be far from thermal equi-
librium. The structure of the approximation
is best exhibited by considering statistically
steady states and using the spectrum function
Qk(&) = (2w) 'J'Qk(t, t')e ~(t )d(t-t'). [All in-
tegrations will be over (-~, ~).] After Fourier
transformation and some algebraic manipula-
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tion, the time-domain RMA equations (Ref. 2, Appendi») yield

2wiG (~) = [k'+& —&u+E (~)] (2)

0 (~) =2~IG (~) I'2 ffd~"d~" IV (~-~"') I'0 '(~')0 (~")0 (~"'),
k k ks p r srs

where

E ((u) =Q fd(u'V . ((u —~')Q ((u') 2v—i+ ffdu) "d(u"'
I V ((u-(u"') I'Q ((')Q +(&u")G ((u"')

k k-s s k-s p r ss rs

(k+p =r+s, u+m'=&a" +&a"'),

(4)

v (~)=v /[1+v w (~)],
v

W ((u) =-2vip fd~'[(G (-(u'))*Q (u)-(u') —Q (-(u')G ((u-( ')],
p p p+0 p p+0

Vk'( ) =ok( ) B„( ), B,( ) =G, ( ) (G, ( ))*,

and mo = V/V, N =total number of particles. Gk(m) is an admittance function for mean response of

qk(t) to small perturbations, and V (&u) is an effective matrix element. The mean occupancies are
Nk =|Qk(~)d&u, and JBk(cu)d&u =1. For (2)-(7) to represent a nonequilibrium steady state, external
coupling terms must be added which will not be examined explicitly here. The RMA equations also
yield

T =2m+ fffd&ud&u
"d~"

I V ((u-u)"') I [B ((u)B (&u')Q (~")Q ((u'")-B (~")B (~'")Q ((u)Q (~')
rs

+Bk(~)Q (~')Q, (~")e,(~"')+B (~')Qk(~)Q, (~")q,(~"')

-B,(~")Qk(~)Q (~')Q, (~"')-B,(~"')Qk(~)Q (~')V (~")]

(k+p =x+s &u+w =w +re ),

where Tk is the net contribution of the interaction to dNk/dt. In a nonequilibrium steady state, Tk
is nonzero and is cancelled by contributions from external couplings.

In thermal equilibrium, '

(8)

(9)Q ((u) =B ((u)/(e -1),
whence Tk=—0. If V is weak and moderate ranged [p~~0«1, (p~) '=A temperature; Vk/V0=1 for
p&k'&1, =0 for p&k'»1], (2)-(9) are soluble analytically for ~0 '» p» p&. They yield N No«N, -
n = p~o. Gk(&u0+or) couples significantly only to itself and (G k(~0-~))*, and is evaluated as the so-
lution of a complex cubic. The solution gives

Bk((u +&a) =2~ 'f((u)[((u+k')/I(el]((u'-k') '" (I(u I
&k', k'«~ ),

B ((u +k'+(u) = —,'(v(u ) '(-1+4&v /(u)'" (0&(v&4(u, k'»w but V = V ),
k 0

(10)

where Bk vanishes for ~ outside the stated limits. See Fig. 1 for f(~). For k -0, (10) gives Bk(~0
+(u) --,'6((u)+ ,'~ 'f (u))/u). For k—'«~„

I V (&u) I'= I~'-k'I/N' (I& I «~ ),
k

= V ' (Im I »u ).
0 0
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The correct equation corresponding to (10) is the phonon relation

B (~ +~) =[I+(u) /2a) )]6((u —(u ) —(~ /2(u )5(~+&@ ), v =k(2&v )'" (k'«~ ),

B ((aJ +k + (d) = l5((d —N ) (k » Cu )~k 0
(12)

which is obtained, among other ways, by ex-
amining the response of the Gross-Pitaevskii
equation to perturbations of the ground state. '

Equation (10) gives a band spectrum whose
weights below and above the phonon frequency
are such tha. t, used in (9), both (10) and (12)
give Nk

—(2Pk ) (k «vo), which is 2 the free-
boson value. ~ For k'»o. o, both give J+Bk(u)du
=k'+ 2&0. Both give Uo = v+/2, Ek = P ' (k
« ~,), Ek = (k'+ u 0) /Iexp [p(k'+ u 0)]-I) (k' » ~,),
where the total energy is U0+QkEk. ' This
Uo equals the classical-field limit of the low-
er bound demonstrated for the eigenvalues of
the RMA model Hamiltonian. '

If Q+ is replaced by Q in (2)-(7) and the two

BBQQ terms are omitted in (8), the results
are the RMA for the Gross-Pitaevskii equation.
In this classical-field limit, (9) degenerates
to Qk(a) =Bk(v)/(Per n) and t-here is an ultra-
violet catastrophe, which is independent of the
statistical approximation. Although the clas-
sical Gross-Pitaevskii equation gives Bk(&u)

correctly, it gives an inadmissible equilibri-
um Qk((u) for Pk'&1.

The cited results indicate satisfactory ther-
modynamic predictions for RMA in the P range
considered. Also, RMA gives expressions
for the density components pk, and it is found
that the predicted suppression of density fluc-
tuations below free-particle levels has the cor-
rect strength and k dependence. These features
provide some motivation for trying the approx-
imation in nonequilibrium situations where Nk
& I for k

Serious deficiencies in equilibrium show up

2-

FIG. 1. The function f(~) which appears in Eq. (10).

for P~o» 1. The predicted quantum depression
of ground-state energy below wP'/2 has the
correct magnitude, but the difference between
(10) and (12) is now thermodynamically signif-
icant. Nk is not given correctly for P '&k'

and the specific heat is ~P instead of
~p-8/2

The behavior out of equilibrium can be inferred
from (8), whose right-hand side is a. sum of
input and output terms from collisions, there-
by resembling the spectral-transfer expression
in analogous approximations for Navier -Stokes
turbulence. ' If Nk, Np, N~, Ns are all «1,
the BBQQ terms dominate and the right-hand
side looks like a Boltzmann collision integral.
If the N's are»1, the BQQQ terms dominate,
and the extra factor Q implies enhanced tran-
sition rates.

Consider the supercooled initial state Nk
= exp(no —Pok'), where oo and Po are chosen to
give an eventual equilibrium N —No «N, &0

»P»P&. Initially, most particles have k2»&uo,
and Vk(u&) and Bk(&u) are replaceable in (8) by

Vk and 5(&u-k2). The BBQQ terms cancel, but
the BQQQ terms increase occupancies at low
and high k at the expense of intermediate k.
This leads to a first stage of condensation where
a number of particles approximating the even-
tual equilibrium No have concentrated into a
region k-k~ with ~0«k~'«P '. In this stage,
kq shrinks with a halving time -k~'/&uo' and the
shrinking is dominated by processes local in
momentum (k, p, x, s-k~). The Nk for k»k~
are very nearly in thermal equilibrium a,mong
themselves.

After k~'=coo is reached, the deviation of
Vk(v) and Bk(cu) from free-particle values be-

comes important. Although Vk(&u) has not its
equilibrium form, the essential behavior is
indicated by (11). The high k continue to be
nearly in internal equilibrium, but at n and

P slightly different from the eventual values
and such that net scattering out of k &k~ from
collisions with the high-k particles is very small.
The shrinking remains dominated by local in-
teractions k, p, x, s —k +. For these, w -k + typ-
ically, and

~ Vk(w) ~
-v/N, which is independent
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of Vo. Consequently, the halving time for k~
is now -k+ '. There is a transition region k
)k+, analogous to the inertial range in Navier-
Stokes turbulence, through which the kinetic
energy squeezed from the collapsing conden-
sate is passed up to high k. Analysis of (8) gives
N& ~k '3'3 here, provided k+ is small enough
that k' & wo throughout the range. After k ~

—~0
is passed, the total time for attaining the equi-
librium condensate (No N)-is -L' (-mL'/h in
ordinary units), where L is the cyclic-box side.

The maximum propagation speed of conden-
sate phase under the exact Hamiltonian is plau-
sibly the phonon speed. But that is not direct-
ly relevant to relaxation into equilibrium. What
counts is the rate at which phase disturbances
dissipate. The RNA halving time k~ for k~'
«~0 is the typical time both for evolution of
incompressible Navier-Stokes turbulence of
velocity k+ and eddy size k~ ' and for nonlin-
ear distortion of a sound wave of wave number
k+ and particle velocity k+. The behavior of
Vk(~) at low k can be shown to be associated
with suppression of density fluctuations in the
chaotic condensate, and its independence on

Vo corresponds to the independence of low-Mach-
number nonlinear effects in a Navier-Stokes
fluid on the value of the compressibility.

If a dilute gas of foreign particles is coupled
to the bosons with an infinitesimal potential
eVp, RMA gives an effective matrix element
e I Vq(&u) I

for scattering with momentum trans-
fer q and energy transfer a. Equation (11) then
indicates anomalously low cross sections for
small q and cu, and suggests anomalously low
mutual friction effects.

A crude model of turbulent counterflow is
obtained by interrupting the condensation pro-
cess when k~'«&0 and displacing the normal
fluid (k)k») by a drift momentum q«&uo";
i.e., NI -N~+q for 4)k~. The immediate ef-
fect found from (8) is a, rapid loss of particles
from k(k to r, s -~0" . However, the region
k» q quickly adjusts to an altered state of near
internal equilibrium, as in the isotropic con-
densation, so that this loss becomes small.
The indicated steady state (with appropriate
external couplings to maintain the drift) has
a skewed condensate with k+-q and a particle
exchange between k (k+ and k )k + which is dom
inated by local interactions and characterized
by the turnover time k~ . The typical unbal-
ance in momentum transfer across the skewed
condensate is -q, and the net rate of momen-

turn exchange between k (k» and k )k» (mutu-
al friction) is therefore -q' per condensate par-
ticle [-q /(mh) in ordinary units].

The relation to the similar mutual friction
found by Vinen' for He II is uncertain. The
true behavior of a weakly coupled gas, in which
the kinetic energy of a typical normal-fluid
particle greatly exceeds the energy penalty
for knocking a condensate particle out of a cor-
related state, may be quite differ ent from He II.
Moreover, the excitations predicted by RMA
are specified only by spectra, and it is fanci-
ful to think of them as vortices or other defi-
nite structures whose form implies highly or-
ganized phase relations among many wave vec-
tors. But it is significant that a statistical ap-
proximation at this level of crudity yields an
anomalously low mutual friction. The RMA
equations for I.=~ do not appear to give a crit-
ical velocity below which mutual friction dis-
appears.

The mean condensate amplitude (p(x)) is ze-
ro in all the analysis reported above,' the ini-
tial ensembles are Gaussian and all eventual
phases are equally probable. RMA can be ex-
tended to nonzero-mean ensembles in the way
that analogous statistical equations for Navier-
Stokes turbulence are extensible to flows with
mean velocities. ' The resulting equation for
(g(x)) is the Gross-Pitaevskii equation augment-
ed by terms expressing coupling to the second-
quantized fluctuations, the latter being speci-
fied by Q and G functions. These terms are
somewhat analogous to the viscous terms in
the Navier-Stokes equation and prevent an ul-
traviolet catastrophe. An essential prerequi-
site to the extension is that the zero-mean BMA
equations do give the correct classical-field
ground-state energy —,'vQ. Applied to the re-
laxation of a chaotic condensate, or to turbu-
lent counterflow, the difference between zero-
mean and nonzero-mean equations is like that
between treating the velocity field by statisti-
cal approximation in homogeneous Navier-Stokes
turbulence and integrating the Navier-Stokes
equation forward in time point-to-point from
a turbulent initial condition. The latter pro-
cedure is more accurate but can require enor-
mously more computation. The nonzero-mean
equations appear to give correct equilibrium
thermodynamics for P&uo» 1 and give correct
phonon frequencies. The zero-mean equations
may be useful principally in describing conden-
sate turbulence, where faithful reproduction
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of phonon behavior is unimportant.
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MODE L FOR HYSTERETIC SUPERCONDUCTORS*
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New types of experiments which provide direct checks of the critical-state model of
hysteresis in type-II superconductors are described. The observed behavior cannot be
accounted for by the critical-state concept.

Discussions of the hysteretic behavior of type-
II superconductors are usually based on the
critical-state model. An example of the way
in which calculations of the magnetization curves
are made using this model is given in the pa-
per of Fietz et al. ' (We also refer the reader
to this paper for references to the work of Bean
and Kim and their co-workers. ) In the simplest
version of the model a maximum or critical
current of constant magnitude Jz flows every-
where in the sample upon removal of a field
greater than H 2. In practice, it has always
been necessary in studies such as those of Ref.
l to assume some functional dependence of
J on the internal field & in order to deduce
the observed magnetization curves. This pro-
cedur e appears to us to preclude a direct ex-
perimental check of the critical-state hypoth-
esis, which is assumed a priori as the basis
of the calculation of Zc(B). In this paper we
wish to describe a number of new experimen-
tal measurements which do provide such a di-
rect check on the critical-state model. The
results presented here concern the behavior
of the remanent magnetic moment or trapped
flux in zero external field with temperature
and transport current. We shall also summa-

rize how the magnetization in a field changes
in the presence of applied transport currents.
We shall refer to the zero-field remanent mag-
netization as tf.

Flux penetration of a long sample in a par-
allel external field H begins when H =H &.cl'
Starting with an initially unmagnetized sample
at some temperature Tl &T~, the application
and removal of any field greater than H~l re-
sults in a corresponding tf. The quantity of
tf incr eases as the field is increased from H z l
to a value H' (which corresponds to 2H* in the
Bean model ). At this field there is no further
increase in tf. (There often is a subsequent
decrease in tf for II ~H', which we shall ignore
in the discussion of this paper. This point will
be discussed in a future paper. ) Magnetiza-
tion cycles in which a field less than H is ap-
plied and removed we shall call minor hyster-
esis loops, and cycles corresponding to H)H',
the major hysteresis loop. A basic feature
of the critical-state model is the assertion that
the local macroscopic current density is every-
where equal to +Jz, or 0. Thus, the tf result-
ing after cycling through a minor hysteresis
loop (tfminor) is associated, according to this
model, with an inner core in which no current
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