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where s, is a scaling factor which is undeter-
mined in the Regge theory. The two common
choices of s, are s, =constant" or so=2mgmg. "
The former choice combined with universali-
ty leads to sum rules in which all cross sec-
tions are taken at the same s value. The lat-
ter choice of s, (plus universality) is precise-
ly equivalent to our relative-velocity prescrip-
tion. It implies that the Regge trajectories
are associated primarily with the quark-anti-
quark systems rather than the hadron-antiha-
dron systems. Of course, the value of s, is
irrelevant unless one has a theory (quark de-
composition or universality) which relates the

residues P&.
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An angular momentum uncertainty relation is obtained in terms of sine and cosine
operators that have a meaning even in a second-quantization formalism. For a three-
dimensional oscillator in coherent states the new uncertainty product is a minimum for
large ~z. Even for small ~z the uncertainty product is very small.

It has long been known' that the interpreta-
tion of the commonly accepted uncertainty re-
lation between angular momentum and angle,

be used so that

y= q(mod2z)

AL hp~ —8
z 2

is not precise. The relation lacks meaning for
small values of AL~ since the angle y is restrict-
ed to values of (0, 2m). In recent studies, Judge'
and Susskind and Glogower have independent-

ly suggested that the angle variable g defined

Although an uncertainty relation can be defined
by the commutator of Lz with g,"'

g lacks a.

well-defined operator definition and continuous
eigenspectrum.
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siny =y/(x'+y')'",

cosy =x/(x'+y')'",

one easily obtains'

[siny, L ]=i cosy,

(4)

In this note we propose an alternative uncer-
tainty relation to either (1) or that obtained from
Eq. (3). It is defined in terms of sine and co-
sine operators that have a meaning even in a
second-quantization formalism. We evaluate
the new expression for a three-dimensional
oscillator in coherent states. It is found that
for large ALZ the coherent states are minimum-
uncertainty states in angular momentum and

angle, as well as minimum-uncertainty states
in position and momentum' and in number and
phase. ' Further, even. for small ALZ the un-
certainty product is very small.

Well-defined angle operators can be construct-
ed if we consider the sine and cosine of y.
This is suggested by the S and C operators re-
cently considered by Carruthers and Nieto'
(hereafter called CN) in studying the number-
phase uncertainty relation. Setting I= 1 and

using the definitions

1 8
L =(r xp)z z

a ln) = nln), (10)

In) =exp( ——,
' In I')) „,Iu)2 ~ (~ i)1/2

n=o

-=A(n) Io),

(n IN In) = In I',
op

(12)

where n is any complex number. Let I n) and

IP) be the coherent states quantized along the
x andy axes, respectively, and a~ and bT be
the creation operators acting on the In) and

IP) states. Then if &u is the oscillator frequen-
cy and d the mean square position, so that

x =d(a+a~), p = -im(ud(a-a' t),

y =d(b+bi), p = -imbed(b-b t), (13)

we have

«)=(p, nI(xp -3p )In, p)z '
y x

We will consider a three-dimensional isotrop-
ic harmonic oscillator. (The results for the
nonisotropic case are obtained by a straight-
forward generalization. ) The coherent states,
which are solutions for the oscillator along any
axis, have the properties that

[cosy, L ] = -i siny.
z

(6) = 2[(Ren)(ImP) -(ReP)(Imn) ]. (i4)

From this we deduce the uncertainty relations

(aL )'(a siny)' ~ —,'(cosy)',

(aL )'(S cosy)' ~ —,'(siny)',
z

where

(m)' -=(x')-(x)'.

(7)

(s)

By then calculating (Lz') and using Eq. (9), we
find

(DL ) = Inl + IpI =N +N =N. —
z X

(siny) is given by

b+b~
(»ny&= p n

Note that Eq. (7) becomes the standard form
(1) when ALz is large, i.e., y is small.

in Eq. (16), we obtain

Using the relations'

A t(n)A(n) = 1,

[(a + a &),A(n) ]=A(n)(n+ n*), (17)

b + b + 2(ReP)
([a+at+2(Ren)]~+ [b+bt+2(Rep)] )ii

Upon transforming Eq. (16) to the Schrodinger wave picture and using the oscillator ground-state
wave functions, ' one finds that

(is)

(siny) =— dx dy exp[-(x-O,')'-(y -8)']y/(x'+y')'",
'lt ~ -oo 0-op

(19)

6 =- v 2(Ren), S —= W2(ReP).
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(siny(Q, S)) =(cosy(S, Q)),

(sin'y(Q, S)) = (cos'y(S, Q)). (2o)

Equations (17)-(19) exhibit the property of the
operator A(n) of translating the position of an
oscillator. (sin y), (cosy), and (cosay) are
of the same form as (19) with the siny in the
integrand replaced by the respective operators.
The expressions (19) yield the useful knowledge

.9

.8

o7

s(N, ~}

.6

This means that the uncertainty relations (7)
and (8) are the sa.me with Q —S, so only (7)
need be studied.

Since the trigonometric operators involve
only the real parts of o, and P, Eq. (15) tells
us that the lowest uncertainty product will be
for real e and P. Therefore, we will consid-
er only those states, meaning that we can de-
fine e (0- e ~1) such that

X=N +N =-'e'+-'e'
x y

—= eN+(l-e)N,

e = Q'/(Q'+ S').

(21)

.5

I/y
~01 1.0 10

N~
FIG. 1. The uncertainty product S(N, e) ={~ )2

x(& siny) /(cosy) is shown as a function of N for var-
ious values of the parameter e defined in Eq. (21).
S(N, 2) is also the uncertainty product U{N) defined in
Eq. (26). All expectation values are for the two-dimen-
sional coherent states discussed in the text.

Using the variables N and e, Eqs. (20) are now

of the form
large and small N, which are

(siny(N, e)) = (cosy(N, 1-&)).

Changing (19) to polar coordinates allows
an r integration, leaving a y integration with
an error function in the integrand. By a ser-
ies of tricks these can be further evaluated to
yield

(22)
1 1 1

lim S(N, e) =
~(1 e) ~ 4'

lim S(N, e) = —,'.
N ~ op

An uncertainty relation symmetric in sine
and cosine, obtained by adding (7) and (8), is

(25)

= S —' J'~2 cos'y exp[-~'sin'y]dy,
cosy Q v'&

sin y &
-g sin 6 -A

= —,'e +, (1-e )
cos cos 15

(aI. )'[(a siny)'+ (a cosy)']
zU=

(cosy)'+ (siny)' 4

It can be shown that U is independent of e and,
in fact, is given by'

U(N) =S(N, 2). (27)

, &1-e
~'

+(~j—,'(cos'6 —sin'g)l, —e

R2-:Q +S2=2N, cos6=Q(Q +S ) (23)

From (7), we now define

(sl. ) (asiny)' 1

S(N, e) = (24)

&(N, e) was numerically calculated and is plot-
ted in Fig. 1 as a function of N for various val-
ues of e. The results agree with the limits for

This is not surprising since e=~ is a symmet-
ric excitation in the x-y plane.

Our results show that the coherent states do
indeed give a low uncertainty product for all
N, and a minimum for large N. In a real sys-
tem we would expect values of e near —,', rather
than almost 0 to 1, on physical and statistical
grounds

It is interesting to note the similarity between
the coherent-state results for this three-dimen-
sional momentum-angle system, and the one-
dimensional coherent-state results for the num-
ber-phase system reported by CN. The angu-
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lar momentum here corresponds to the number
operator in CN. The resemblance of the numer-
ical results lends further intuitive understand-
ing to the concept of the S and C operators as
being the sine and cosine of the phase angle.

A more detailed account of the results given
here and in CN, along with the results of work
in progress, will be reported elsewhere.
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Assuming various combinations of nucleon
(N), &(1236) (N*), and p a.s dominant partici-
pants in the low-energy isovector m+ m- N+ N

amplitude, we have calculated the nucleon iso-
vector form factors for moderate momentum
transfer. The aim of the calculation was
(1) to determine the effect on the theoretical
parameters, and on the fit to the data, of the
use of the N and N* and a finite-width p, and
(2) to produce a form-factor-predicted pN1V

vector coupling constant for another test of
the hypothesis of universal vector coupling.

Nucleon form factors. —Our initial calcula-
tions were made with the usual once-subtract-
ed dispersion relations, ' using the contributions
shown in Fig. 1 for the spectral functions. As
can be seen, the pion form factor was assumed
to be dominated2 by the (finite width) rho. It
was quickly found that among the possible sets
of isovector form factors, I, and F, had
rather small subtraction constants while G@~
and GM did not. Since subtraction constants

are undesirable for this process on both the-
oretical' and phenomenological' grounds, all
subsequent analyses, including those report-
ed here, were made with dispersion relations
assumed for the vector current (Dirac) and
tensor current (anomalous) form factors F,~,

V

The ply% vector and tensor coupling constants'
f„,ft were determined by a least-squares fit
to a collection' of the latest Gg, GM data in
the range O~q'-22 F ', shown in Fig. 2. The
two subtraction constants were fixed by the
isovector charge and anomalous moment va1-
ues F»(0). Initial calculations also gave a
best-fit chi squared' which was only one-fifth
of its expected value. Since there were 40 da-
ta, which were from several different labora-
tories, it was hardly likely that this incredi-
bly small value was due to either chance or
gross overestimation of experimental error.
The neutron electric form factor is experimen-
tally consistent with zero for all momentum
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FIG. 1. Two-pion intermediate states in the nucleon isovector form factors, assuming p dominance of the pion
form factor.


