VoLuME 18, NUMBER 1

PHYSICAL REVIEW LETTERS

2 JANUARY 1967

with a nuclear explosion used as a source of
intense pulsed neutrons!! confirm that fission
in the slow-neutron resonances is strongly in-
hibited and is only about 1/100 of the capture
process. Since the measurements of the cap-
ture and fission cross sections were made si-
multaneously with the same energy resolution,
it is meaningful to compare the shape and peak
heights of the cross-section curves. There

is a striking similarity in the two partial cross
sections, particularly below 200 eV, which
implies a nearly constant value for the ratio
Ff/Fy. If I', is assumed to be constant, then
the fission width varies little, indicating a large
number of effective channels open for fission
and thus also providing strong evidence for
this reaction in Pu?%.

We believe that the data described here con-
stitute substantial evidence that the (z, yf) re-
action is present in Pu®® and that more accu-
rate and complete studies on Pu®*®, Pu®¥, and
other favorable nuclei should provide conclu-
sive evidence of the existence of this reaction,
and perhaps give quantitative information on
the extent to which it is present.

TWork performed under the auspices of the U. S.
Atomic Energy Commission.
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It is the purpose of this note to point out that
the simultaneous use of (a) low-energy theo-
rems and (b) internal symmetries leads to dy-
namical constraints without any approximation
in regard to strong-interaction intermediate
states. In other words, as we shall show first
for isospin, then for SU(3), the simultaneous
implementation of (a) and (b) leads to consis-
tency conditions of a new kind which follow nei-
ther from (a) alone nor from (b) alone. When
combined with nonsubtracted dispersion rela-
tions, the conditions take the form of integral
relations between cross sections—see, e.g.,
Egs. (5) and (8) below. They cannot, in gener-
al, be satisfied pointwise by cross sections
at a given energy. We shall see in fact that
they may interconnect with each other distinct

multiplets of the internal symmetry.

As a first application, the truncation meth-
ods for sum rules will be discussed. Several
attempts have been made recently to truncate
cross-section integrals in sum rules by the
approximation of the continuum by a finite set
of more or less sharp resonant states. A main
aim of this procedure is to find dynamical con-
straints which may serve to understand approx-
imate dynamical symmetries such as SU(6).
The consistency conditions are of interest for
the understanding of the truncation method.

It will be shown how they generate so-called
“null solutions.” An example of these is the
following. It has been noted by many authors’
that sum rules for the anomalous moments of
the proton and the neutron give as a good lead-
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ing approximation
k(p) +k(n) =0, (1)

provided one assumes 33-resonance dominance.
More recent estimates?® for x(p) separately
lend further credence to this approximation.
However, the extension to SU(3) and decuplet
dominance yields® the further restriction on
(1) that «(p) =«(n) =0. The view will be adopt-
ed here that this is an undesirable result.?

As we shall see, the consistency conditions
are of use to understand this situation and to
indicate approximations such that (1) is true
but such that null solutions are avoided.

In this note we exemplify the idea with the
help of the low-energy theorem® for the ampli-
tude f,(w?) in Compton scattering and the relat-
ed sum rule for anomalous magnetic moments
given by Drell and Hearn.? Higher order elec-
tromagnetic effects are neglected throughout.

Consider a spin-3 particle with mass M and
anomalous moment ex/2M. The low-energy
theorem says that

f2(0) = —ax®/2M2. (2)

Note that Eq. (2) is true provided the particle
in question is not degenerate with others with
the same quantum numbers. Likewise, it will
be assumed in what follows that if a multiplet
is discussed, it is not degenerate with other
similar multiplets.

Isospin symmetry alone.—Consider a multi-
plet with isospin I. For I>3%, f(w? is a super-
position of amplitudes with isospin 7+1, I, I-1.
On the other hand, the «’s within any multiplet
satisfy

K=a+bQ, (3)

with constants a, b over the multiplet. @ is
the charge variable within the multiplet. Thus
the right-hand side of (2) contains two param-
eters a, b, while the left-hand side contains
four amplitudes, for 7>%. Hence the latter
are constrained. (For the nucleon, no such
conclusion can be drawn.)

This constraint leads to a sum rule for total
cross sections if one assumes unsubtracted
dispersion relations:

2mtaKk®/M? =X,
{*o]
— -1
X=J, wldw [0 (w)-0, (w)]. (4)
For example, applied to the T triplet, one has
4X(2°) =X(z) +X(z7) £ 2[X(zNX(Z )2, (5)
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where the + (=) sign holds if «(Z%) and «(Z7)
have the same (opposite) sign. Equation (5)
does not follow from isospin alone. The follow-
ing is an example of a null solution: If the con-
tinuum is approximated by a set of isoscalar
states (A, Yy*, «++) then all £’s have zero «.

SU(3) neglecting SU(3) breaking except for
lowest electromagnetic order.—For any mul-
tiplet, « can be written as

":KFQ—ész[U(U+1)_§Q2_%F2], (6)

where kp, kp are the F- and D-type anomalous
moments. U is the U-spin eigenvalue and F?
=3(p?+q%—pq +3p) is the value of the quadrat-
ic Casimir operator for the representation
(p,q). [For the octet, (p,q)=(2,1) and F2=3.]
Thus the left-hand side of (4) now depends (at
most) on two parameters, while the right-hand
side depends (except for the case of a singlet)
on a larger number of amplitudes, so the lat-
ter are again constrained.

Consider the baryon octet as an example,
where one has four amplitudes after reduction
with respect to U spin. Let X(U, Q) denote the
quantity defined in Eq. (4) for specified U, @
values. We have

X(1,0)=x(0,0) = 87T201KDZ/9M2,
xX3,1)= 2ﬂ2a(KF + %KD)Z/MZ,
Xx(%,-1)= Zﬂza(KF—éKD)Z/MZ. W)

The relation (5) is again implied by (7), while
in addition

X(p) +X(n)=2[X(p)Xm) 2 =X(=7). (8)

[Here a sign has been fixed from the knowledge
that k(p) and k(n) have opposite sign.] Equa-
tion (8) does not follow from U spin alone.
Equations (5) and (8) are not so much of in-
terest from the point of view of direct verifi-
cation. What does perhaps seem worthwhile
to note is the mere fact that such cross-section
relations are induced by an internal symmetry
combined with the input that goes into the low-
energy theorem together with the use of unsub-
tracted dispersion relations® and regardless
of the detailed structure inside the ‘“black box-
es” for the reactions y +particle -~ final states.
Note that the present argument can also be ap-
plied to the isoscalar sum rule given by Bég.’
Next we give a few examples which indicate
how the equations (7) work when one applies
the truncation methods.
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(1) Consider the case where the cross sec-
tions in (4) are approximated by having as fi-
nal states a set of 10 and 10* resonances which
may have nonzero widths but such that there
is no overlap between 10 and 10*. Otherwise
the set is arbitrary. From the (U, Q) content
of 10 and 10*, it follows that X(0,0) =0. Hence
from (6), X(1,0)=0. On the other hand, one
readily verifies that for the set of states at
hand one has the stronger condition X(1, 0)
=X({,1) +Xx(4, -1). But all X’s must be =0.
Thus we find a “null solution:” All X’s=0;
kp=Kkp=0. Thus is true regardless of the spin
values we assign to the resonances.

This example contains the special case where
we saturate the cross sections with just the
familiar J=3% decuplet which leads to x(p) = k(n)
=0 in the SU(3) limit. With the help of (7),
many other combinations of saturating states
which yield null solutions are easily written
down.,

(2) Consider next the case of an arbitrary
set of 10 and of 1 resonances. We allow any
amount of overlap as well. Neither 10 nor 1
contains U=4, @=-1. Therefore X(3,-1)=0
hence, from (7),

KD=3KF-K(p)+K(n)=0- 9)

Can this result be spoiled by the other relations
in (7), i.e., do we have a null solution or not?
A simple calculation shows that for this set,

X(ly 0) =X(%’ 1) =C(&)’
X(0,0) =C(1),

where C(10), C(1) denotes the contribution to
the respective integrals from the 10 and the
1 states, respectively. Note that X(1,0) =X(3,
1) implies in particular that «2(p) = «%(n).

We now see what the consistency conditions

do: They imply that
c(10)=c(1), (10)

which shows again that if we drop the 1’s, we

get a null solution. It is remarkable that how-
ever one approximates the continuum by select-
ed unitary multiplets, the relation x(p) = -«(n)
#0 can be obtained only if the transition elements
between the baryon and distinct SU(3) multiplets
are correlated. Thus the consistency conditions

contain information on SU(3) spectra. (Note
that spins and parities are not specified at this
stage.)

The saturation with at least one 10 and one
1 is the simplest way I know of to satisfy Eq. (1)
with k#0. The neglect of contributions from
10*%’s, 27’s, and other 8’s always gives (1) with-
out further ado. Their inclusion in a nonover-
lapping way can be shown to yield C(10) +C(10%)
=C(1) +(5/9)C(27), where C(27) and C(10%) are
the respective contributions to X(0, 0) and X(3,
-1), but this is not enough to yield (1) without
additional constraints. In this sense Eq. (10)
appears to be the simplest possibility.

The present argument leads to three further
questions:

(1) To examine how the implementation of
Eq. (10), or an alternative thereof, can be jus-
tified further. Note that Eq. (4) for the octet
together with Eq. (10) implies a connection be-
tween all possible three-triplet states, with
a suppression of further states that moreover
contain triplet-antitriplet pairs.

(2) To examine whether or not there exist
other consistency conditions, compatible with
but independent of those given above (due, for
example, to stronger symmetry requirements),
such that the class of null solutions will turn
out to be even greater than is found here.

(3) To examine whether the nosubtraction
Ansatz itself is justified for specific models.

It is a pleasure to thank M. A. B. Bég for
illuminating discussions.
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