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In most calculations on inelastic collision
of electrons with atoms there has been a gen-
eral lack of agreement with observation main-
ly due to the treatment of the interelectronic
interaction as a perturbation. In a recent cal-
culation by Vainshtein et al. ,

' ' full account
is given to this interaction by treating the prob-
lem as a binary collision between the incident
and atomic electrons with the motion of their
center of mass in the Coulomb field of the nu-
cleus, and marked improvement in compari-
son of theory and observation has resulted.
Three approximations are applied in this cal-
culation which will be described briefly.

For the case of electron-hydrogen system,
let r„r, represent the position vectors of the
atomic and incident electrons, and g(r„r,) the
total wave function of the system. By writing

where cp, (r, ) is the initial eigenfunction of the
atomic electron, and introducing R= 2(r, + r2)
and p = 2(r,-r, ), the Schroedinger equation re-
duces to an equation for g with variables R and
p. The first approximation is to neglect cer-
tain terms in this equation (cf. Ref. 1) in which
case the solution to g will be the produce of
two Coulomb functions:

g(r„r2) = w v(sinhmv) 'exp[ik, (R+ p)]F (iv, 1, ik~R-ik, R)F (-iv, 1, ik,R-ik, p), (2)

with R, the momentum of the incident electron
and v= f/k, The par. ameter f, called the ef-
fective charge, is introduced to minimize the
effect of the neglected terms and is given by

g =u,/(u, ~ e,"'),
with e, the ionization energy of the atom.

Neglecting the exchange the transition ampli-
tude is given by

T(1,2) = (q&2(r, )e 2 2 Ir -r, I -x, ((r„r2)), (4)

where 1 and 2 refer to the initial and final states,

y, (r, ) to the final eigenfunction of atomic elec-
tron, and R, to the momentum of the scattered
electron. With g given by (2), a "peaking approx-
imation" is applied to (4). In this approxima-
tion the value of a slowly varying function is
assumed constant when it is multiplied by a
rapidly varying function, and a value is assigned
to the argument of the slowly varying function
at which the rapidly oscillating function becomes
infinite. In this way it is found that

~~
T (1, 2) = (4m/q')A(2 I e I 1), (5)
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with q = k,—ic„and

22q r
dr F (i v, 1, ik p -iic, r)

'lr 'V

xF(—iv, 1, imp-ik, r), (6)

A =N~ exp F (iv, l, ik, ))
iq t' -iq t

(cos6 ~ g o cos~~

xF (-iv, 1, i&,()d(
2 k 2+@2 2

=NF(iv, -iv, 1,x), x=
1 2k 2-k 2-q2

The analytic continuation of this is given as

1 2 i y-vln4x
A = (~v coth~v) Re[e

xF (iv, iv, 2iv+ 1, I/x)],

where

p= ar gl' (1+iv)-argI'(-, + i v).

grith T(1, 2) determined, the cross section in
units of 7TQp is given by

k~+k
Q(1 2) = —, I T(1, 2) I'qdq.

27)ao k
l 2

At the threshold of excitation we obtain

(10)

with N = mv(sinhmv) '. The third approximation
consists in replacing 2iq. r in the above integral
by -2iq r, apparently to facilitate the integra-
tion in (6).

It is the purpose of the present note to eval-
uate this integral exactly, revealing new struc-
ture in the theory and obtaining over-all improve-
ment in comparison of theory and observation.
Choosing the ~ axis along k, and introducing
the spherical coordinates q, ~„p, for q, and
parabolic coordinate $, q, y for r, with $=~
and g=r+~, it follows that'

where QB = 3.85@'~' is the Born cross section.
In Fig. 1, Q(ls-2s) and Qz(ls-2P) =0.918Q(ls,

@)+0.246Q (1s, 2Pm = 0) are plotted as functions
of the incident energy. In both 1s-2s and ls-
2P excitations a narrow maximum appears at
0.03 Ry above threshold before the broad max-
imum. These maxima have also been found
in Is-2s-Pp coupling, s~' and observed for 1s-
gfr excitation. ' Recent mea, surement of Hils,
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With v= & at threshold, this reduces to

Q (1s, c) = 0.857Q [I+0.372 cos(inc-0. 310)], (14)

where

Q (1s, 2lm) =fr~'(1-&5 )5 0.2

Q
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(12)

1162
Q (1s, c)= ——(mv cothmv)

2 3e

2i v ln4e
e 3/21 + 3Re( )( )

f.' (13)

2iv ln3e-
ef=,~(&v cothw v) 1+Re 1+ 4iv

~ being the excess energy above threshold.
For ionization we find similarly

FIG. 1. Q(1s, 2s): The present theory (T), the Born,
and the 1s-2s-2P close coupling [P. G. Burke and
K. Smith, Rev. Mod. Phys. 34, 458 (1962); M. Gailitis
and R. Damburg, Proc. Phys. Soc. (London) 82, 192
(1963); K. Omidvar, Phys. Rev. 113, A970 (1964)] cal-
culations are compared with measurement [R. F. Steb-
bings, W. L. Fite, D. G. Hommer, and R. T. Brack-
mann, Phys. Rev. 119, 1939 (1960)] (circles with error
bars). Q(ls, 2p): The present theory (&), the Born,
and the 1s-2s-2P close coupling are compared with
measurement [W. L. Fite and R. T. Brackmann, Phys.
Rev. 112, 1151 (1958)].
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change effects, as well as a discussion of the
validity of the effective charge approximation
[cf. Eq. (3)], will be presented in the future.

I wish to thank B. Baxter for assistance in
programming of the numerical integration,
Dr. M. Mittleman for pointing out the possibil-
ity of inclusion of the exchange effects in the
theory, and Dr. A. Temkin for valuable discus-
sions.
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VANISHING KNIGHT SHIFT IN SUPERCONDUCTING ALUMINUM
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We report here a new measurement of the
Knight shift in superconducting aluminum which
differs from a previous result' in that now the
Knight shift extrapolates to a value at T =0'K
which is essentially zero, as predicted by the
BCS theory of superconductivity, according
to which the ground state consists of a coher-
ent superposition of Cooper pairs in singlet
spin states.

Previous measurements of the Knight shift
in superconductors have all shown that the spin
susceptibility at T =0 remains finite, contrary
to the prediction of the BCS theory. In the ele-
ments tin, mercury, and vanadium these re-
sults have been explained either on the basis of
spin-orbit scattering or on the basis of contri-
butions to the Knight shift that are unaffected

by the transition to the superconducting state. '~

Aluminum, however, was expected to be one
example where these effects might not play
a significant role: (1) Spin-orbit coupling (both
to displaced surface atoms and to the crystal-
line field) should be small because aluminum
is the superconducting metal with the smallest
atomic weight, and (2) aluminum has no d elec-
trons so that one can a.ssume that the paramag-
netic susceptibility is entirely due to conduc-
tion electrons. The result' of a measurement
made on one sample of aluminum films a num-
ber of years ago was that the Knight shift a,t
T= 0'K was about 75%. In considering this un-
expected result, Appel' concluded that all of
the possible contributions to the Knight shift
in superconducting aluminum should nearly

156


