REGGE CUT IN PROTON-PROTON SCATTERING*

K. Huang, C. E. Jones, and V. I. Teplitz Department of Physics and Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 20 December 1966)

A remarkable break in the differential cross section for $p-p$ scattering as a function of energy at $\theta = 90^\circ$ has been discovered recently.¹ In this note, we point out that this phenomenon may be explained in terms of a Regge cut, the existence of which has been postulated for independent theoretical reasons.² The experimental information may be summarized by the formula

$$
\begin{aligned} \n\langle d\sigma/dt \rangle_{90^\circ} &= \int C_1 \exp(-3.29k^2), \quad k^2 < 3.40, \\ \n&= \int C_2 \exp(-1.51k^2), \quad k^2 > 3.40, \quad (1) \n\end{aligned}
$$

where C_1 , C_2 , are constants, and k is the c.m. momentum in BeV/ c . The experimental points cover the region $2 < k^2 < 6$, corresponding to $4 < -t < 12$, where as usual, $t = -2k^2(1-\cos\theta)$.

For an exploratory investigation, we ignore complications due to spin and treat the protons as if they were scalar particles. Our purpose is not to produce a good numerical fit of the data, but to see whether a mechanism can be found that leads naturally to the observed phenomenon. We assume that the scattering amplitude is given by a Regge formula without the "background" term. Mandelstam' has shown in potential scattering that the background integral in the Sommerfeld-Watson transformation can be pushed arbitrarily far to the left in the J plane, provided one continues $P_J(\cos\theta)$ into the complex J plane in a specific manner, which we adopt. The contribution of a single Regge pole of positive signature is then given by

$$
A_{\text{pole}}(s, t) = \overline{\beta}(t)(2\alpha + 1)(1 + e^{-t\pi\alpha})
$$

$$
\times Q_{-\alpha - 1}(\cos\theta_t)/\cos\pi\alpha, \qquad (2)
$$

where $\cos\theta_t = -1 - s/2k_t^2$, with $k_t^2 = t/4 - m^2$. For $t < 4m^2$, $\bar{\beta}(t)$ is real and has no pole. It is related to the residue of the Regge pole $\beta(t)$ by $\overline{\beta}(t) = \beta(t)e^{-i\pi\alpha}$. If α is the leading trajectory, $\overline{\beta}(t)$ must have zeros at negative halfinteger values of α to cancel the poles of 1/ cos $\pi\alpha$. The function $Q_{-\alpha-1}$ is finite at negative integer α . Hence, $A_{\text{pole}} = 0$ at $\alpha = -1$, $-3, -5, \cdots$, owing to the signature factor.

(In the usual Regge formula in which $Q_{-\alpha-1}/$ cos $\pi\alpha$ is replaced by $P_{\alpha}/\sin \pi\alpha$, only ReA_{pole} = 0 at these values of α .) At $\theta = 90^\circ$, $-\cos\theta_t$ -3 as $k \rightarrow \infty$. For $k^2 > 2$, we can replace $Q_{-\alpha-1}$ by its asymptotic form with an error of less than 10% . This leads to

$$
A_{\text{pole}}(s, t) = \gamma(t) y^{\alpha} (1 + e^{-i\pi\alpha}), \tag{3}
$$

where $y = 2 \cos \theta_t$, and $\gamma(t) = \pi^{1/2} \overline{\beta(t)} (2\alpha + 1) [\Gamma(\alpha)]$ $+\frac{1}{2}$ / $\Gamma(\alpha+1)$ csc $\pi\alpha$. For our purpose, it is sufficient to know that for $t < 4m^2$, $\gamma(t)$ is real and has no poles. We assume it is a smooth function and slowly varying compared with the rest of the factors in (3).

Apart from the Pomeranchuk trajectory P, the trajectories relevant for $p - p$ scattering are P' and ω . We assume that all these trajectories are well approximated by straight lines. The slope of \overline{P} is taken to be betwee and $\frac{1}{5}$ (BeV/c)⁻², and those of P' and ω about 1 (BeV/c)⁻². The former is indicated by for- $\frac{1}{2}$ (BeV/c). The former is indicated by for ward $p-p$ scattering.⁴ The latter is the known slope for $A_{\,2}$ and $\rho,^5$ which we assume to be in the same SU(3) octet as P' and ω , respectively. The trajectories are shown in Fig. 1, from which we can see that the effects of P' and ω can be neglected compared with that of P, for $t < -2$. The trajectory of P is real for $t < 4m^2$ and is taken to be

$$
\alpha(t) = 1 + \alpha' t. \tag{4}
$$

Associated with P are branch cuts in the complex J plane, arising from the exchange of two or more P trajectories.² We only take into account the cut arising from two P trajectories. The moving branch point of this cut has a trajectory determined by the P trajectory, given by

$$
\alpha_C(t) = 2\alpha (t/4) - 1 = 1 + \frac{1}{2}\alpha' t, \tag{5}
$$

which is also shown in Fig. 1. The contribution of the cut to the scattering amplitude is taken to be

$$
A_{\rm cut}(s, t) = \gamma_c(t) y^{\alpha_c} [1 + \exp(-i\pi\alpha_c)], \qquad (6)
$$

FIG. 1. Hegge trajectories and cut trajectory relevant for $p \rightarrow p$ scattering. Our model takes into account only the cut and P.

where $\gamma_c(t)$ absorbs a factor $1/\ln(-t)$ and is a real function with no pole. Equation (6) represents only the leading contribution of the cut for large $-t$. The correction terms are of order $1/\ln(t/t_o)$, where t_o is a unknown scale factor. These correction terms do not, in general, have a definite signature. We assume $\gamma_c(t)/\gamma(t)$ to be a constant:

$$
\lambda = \gamma_C(t)/2\gamma(t),\tag{7}
$$

which is an adjustable parameter. We note that in our approximation, $A_{\text{cut}} = 0$ when α_c is an odd integer. This corresponds to $\alpha = -3$, -7 , -9 , \cdots Our model consists of writing for the scattering amplitude

$$
A(s, t) = A_{\text{pole}}(s, t) + A_{\text{cut}}(s, t), \tag{8}
$$

which is related to the differential cross section by

$$
d\sigma/dt = (\pi^2/k^4) |A(s, t)|^2.
$$
 (9)

Let us first see qualitatively how a sharp break can occur in $d\sigma/dt$. Since the effect of the cut is apparently absent in diffraction scattering, we expect $\lambda \ll 1$. As we go to large k^2 at negative t, however, the cut must eventually dominate over P because α_c has a smaller slope than α . The slope of $d\sigma/dt$, therefore, would be determined mainly by P at moderate values of k^2 , and by the cut at large k^2 . The changeover can occur sharply if it happens near $\alpha = -1$, where A_{pole} vanishes, thereby exposing the cut dramatically. Referring to

Fig. 1, we see that $\alpha = -1$ at $t \approx -7$, corresponding to $k^2 \approx 3.5$, which is just where the break in $d\sigma/dt$ was observed. In our model, we can realize this by choosing λ appropriately.

At $\theta = 90^{\circ}$, $t = -2k^2$, and (9) can be cast in the form

$$
d\sigma/dt = \pi^4 \alpha'^2 \gamma_c^2 f_\lambda(\varphi), \qquad (10)
$$

$$
\sin^{\frac{1}{2}} \pi \varphi \gamma^2 \ 2 - 2\varphi
$$

$$
f_{\lambda}(\varphi) = \left[\frac{\sin 2\pi \varphi}{\frac{1}{2}\pi \varphi}\right] y^{2-2\varphi}
$$

$$
\times \left[\sin^2 \frac{1}{2}\pi \varphi + \left(1 + \frac{1}{\lambda}y^{-\varphi}\right)^2 \cos^2 \frac{1}{2}\pi \varphi\right], (11)
$$

$$
\varphi = \alpha' k^2, \tag{12}
$$

$$
y = 6(\varphi + \frac{2}{3}\alpha' m^2) / (\varphi + 2\alpha' m^2). \tag{13}
$$

The factor $y^{2-2\varphi}$ in front of the bracket in (11) is due to the cut alone, while the bracket represents the effects of the pole and the interference between cut and pole. If $\lambda \ll 1$, the slope of $f_{\lambda}(\varphi)$ changes rapidly in the neighborhood of $\varphi = 1$. In fact, the curve exhibits a nearly discontinuous change of slope. We choose α' to make the point $\varphi = 1$ correspond to k^2 = 3.4. The value of λ is then chosen to make the difference in slope before and after the rapid change agree with experiments.

To obtain correct absolute slopes, it is necessary to assume that $\gamma_c = \gamma_0 \exp(-ck^2)$, where γ_0 and c are constants. We find in this manner

$$
c = 0.35 \text{ (BeV}/c)^{-2},
$$

\n
$$
\alpha' = 0.29 \text{ (BeV}/c)^{-2},
$$

\n
$$
\lambda = 0.11,
$$
 (14)

which are all consistent with our original assumptions. We note that if the sign of λ is changed. then $d\sigma/dt$ does not possess the desired break. A comparison between theory and experiment is shown in Fig. 2. The dashed portions of the curve correspond to regions in which the model is inapplicable.

For k^2 < 2, the model should not be used because the effects of P' and ω have been neglected. For k^2 > 4.5, the theoretical curve falls rapidly because (10) vanishes at $\varphi = 2$ ($k^2 = 6.8$), where $\alpha = -3$, $\alpha_c = -1$. Clearly, near this point, we must take into account the higher order corrections to the cut as well as the cuts arising from the exchange of three or more P trajectories. Since these cuts lie higher than the first cut, they may dominate the cross section at large k^2 .

FIG. 2. Comparison between theory (the curve) and experiment (the dots). Experimental errors vary from 3 to 6%.

There exists an independent suggestive theoretical argument that the Begge cuts should be important at the value of t where $\alpha = -1$. It has been shown by Gribov and Pomeranchuk' that in the absence of cuts, there will exist an essential singularity at $J = -1$ where an infinite number of Regge poles accumulate. The Regge cut proposed by Mandelstam shields the essential singularity and allows poles to pass through the point $J=-1$. It is, therefore, not surprising that the cut becomes important at a point where the pole trajectory passes through $J=-1.$

The model used here can be extended to angles other than 90°. For an order-of-magni-

tude estimate, we may extend (11) in an obvious way to $\varphi \neq 90^{\circ}$ and symmetrize with respect to $cos\theta$. There are unfortunately only a few experimental points available for comparison, for the bulk of existing large angle data' pertains to k^2 > 7, where our model must be supplemented by other contributions, such as a higher Regge cut. For the few points that comparison can be made, there is consistency within a standard deviation. However, we do not regard such a comparison significant, because at $\theta \neq 90^\circ$, the scattering amplitude can acquire a term antisymmetric in $\cos\theta$, which will be independent of the extension of (11) . A careful treatment of the complete angular range, with spin taken into account, is in progress.

We thank Professor A. D. Krisch for furnishing us with the experimental numbers.

¹C. W. Akerlof, R. H. Hieber, A. D. Krisch, K. W. Edwards, L. G. Ratner, and K. Ruddick, Phys. Rev. Letters 17, 1105 (1966).

²S. Mandelstam, Nuovo Cimento 30, 1127, 1148 (1963).

³S. Mandelstam, Ann. Phys. (N.Y.) 19, 254 (1962).

 4 B. R. Desai, Phys. Rev. Letters 11 , 59 (1963); T. O. Binford and B.R. Desai, Phys. Rev. 138, 81167 (1965).

 5 R. J. N. Phillips and W. Rarita, Phys. Rev. 139, B1336 (1965).

 ^{6}V . N. Gribov and I. Ya. Pomeranchuk, Phys. Letters 2, 239 (1962).

⁷G. Cocconi, V. T. Cocconi, A. D. Krisch, J. Orear R. Rubenstein, D. B. Scarl, B.T. Ulrich, W. F. Baker, E. W. Jenkins, and A. L. Read, Phys. Rev. 138, B165 (1965).

^{*}This work was supported in part by the U. S. Atomic Energy Commission under Contract No. AT (30-1)- 2098.