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It is shown that the corrections due to octet mass splitting and finiteness of the parity-
nonconserving spurion lead to significantly better agreement of the prediction with ex-
periments for the eight independent nonleptonic hyperon-decay amplitudes. Comments
are made on the reasons for the validity of I,ee-sugawara sum rules for the parity-non-
conserving and parity-conserving decays.

Sugawara' and Suzuki' have shown that the
s-wave hyperon decays are treated very well
by the hypothesis of current algebra, partial-
ly conserved axial-vector current (PCAC), and
soft-pion extrapolation. The extension of the
same procedure to p-wave hyperon decays was
considerably clarified by Brown and Sommer-
field, Hara, Nambu, and Schecter, and Badi-
er and Bouchiat. 4 The predicted values of the
p-wave a,mplitudes, however, have not compared
very well with experiments. In general, they
were found to be two to three times smaller
than the observed values.

In view of the above, it is pertinent to ask
whether the success in case of the parity-non-
conserving (pv) deca. ys can still be maintained,
while the apparent shortcomings of the meth-
od in case of the parity-conserving (pc) decays
can be overcome by taking into account consis-
tently the following SU(3)-breaking effects:

(a) Mass splitting within the baryon octet.
This leads to certain corrections, which are
of order b,Mj2M compared with Born terms
and were dropped by Brown and Sommerfields
on the ground that these must be small.

(b) Finiteness of the parity-nonconserving
spurion ((B' IHpv [B)g 0). This enters into the
equal-time commutator (ETC) term for pc de-
cays and to the Born terms for pv decays. Hith-
erto, '~~ it has been put to 0 at both places on
the grounds that it is forbidden in the limit of
SU(3) by I invariance. A priori, the violation
of such an SU(3) selection rule could lead to
large correction' inasmuch as the observed
value of the A. , -2~ decay amplitude, for exam-
ple, is large, while it is forbidden'& in the lim-
it of SU(3) for the same reason as the pv spurion.

The purpose of this note is to point out that

lim [q T +f M]=i(t3/[F (0),H (0)](o), (1)
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where M is the amplitude for hyperon decay
(o -8+~'),

M = -i(P + v (H (0) ( o.); (2)

q]" is the momentum associated with the out-
going pion; f~, T, and F5 are defined by

A =-if I y (x),
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F (t) = fd xA (x, t).

Following Brown and Sommerfield, ~ we split
M into a sum of a Born term B and a remain-

the correction mentioned in (a) turns out to
be extremely important for pc decays in a rath-
er unexpected manner and leads to significant-
ly better agreement with experiments compared
with that of any previous work, '~ while that
due to (b) is found to be not as important even
for large strength of the pv spurion. In the
light of these corrections, we also comment
on the reasons for the validity of the Lee-Su-
gawara8 sum rules for the pv and pc decays,
respectively.

Using reduction technique, PCAC, and par-
tial integration, one obtains the by-now famil-
iar relation'
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der term Fil, defined by

M(q") =- [B (q")+B (q")]+a(q"),1 p, 2 p,
(6)

Let us assume a vector-axial-vector current-
current theory for the nonleptonic weak inter-
action in the form

where the Born term has been divided into two
parts B' and B'; in B', pion emission suc-
ceeds the weak transition whereas in B', it
precedes the weak transition. We will assume
that the remainder term A(q1") for the physi-
cal value of qI" is well approximated by a(0).
We can then combine Eqs. (1) and (6) to write

2

M(q") = P [B (q")-Z ]
j=1

+(i/f )(P I [F (0), H (0)] In), (7)

0

H (AS=I) =Gdo', .JY=H +H
W ij pc pv

We define the pc and pv spurions by
~ ~

(jIH (0) li) =u.a u, ,w z'

where

(C ) (H
H =~ . . for H (0)=

w iij
~

w
V. y5

pv

(i2)

where

R —= lim —[q T +f B (q )],j . 1 p, j j
q"-ofw

(s)
~ ~

C = (g'/v 2 ) [d'D +f'F ].. .v
(14)

By the assumed octet property of the Hamil-
tonian we may represent the pc spurion in the
SU(3) limit" by (we choose d'+f' =1)

T —= Jd xe 8(x )(pIA (x)H (0) In),0 p,

and

T =— fd x-e 8(x )(pIH (0)A (x) In). (10)
0 5'

~ ~

About the pv spurion v~j we comment later.
Following the procedure of Refs. 3 and 9 it

is straightforward to evaluate the Kj terms
of Eq. (7) including the corrections (a) and (b).
This leads to the following general form for
the pc and pv decay amplitudes'.

2 . AM. i
M (q ) =g B (q ) 1 — +—(pI[F (0), H ]In),pc . pc 2M f 5 ' pcj-1 7T

2 . EM. ' i
(q")=QB '(q") i-i- ~ +—(pI[F (o),a ]In),

pv . pv 2M f 5 ' pvj=1 1T

(16)

where AM and AM. ' stand symbolically for differences of two masses within the baryon octet, while
2M stands for the sums of two masses within the same octet. (These differ from one process to an-
other. ) The Born terms B c~(q&) and B v~(q&) are given by

ny
1 1 fc y5)

B (q ) = iu (p')(M +-M ) u (p)g[fF +dD ] (i7)

5p
2 2B (q")= iu (p)(M +M ) -Iu (p)g[fF +dD]

5
~

5 ) n (is)

where the upper sign holds for Bpc and the lower sign for Bpv . The indices y and 6 denote the inter-
mediate baryon states for B' and B', respectively. In writing the above expression we have used SU(3)-
symmetric pseudoscalar coupling for the BBP vertices. We normalize to d+f =1, so that g'/4~ =14.6.

In order to obtain a rough estimate of the pv spurion we will adopt a model suggested before in
Ref. 6 (although the results are found to be largely independent of the model). In this model the E, -2w
decay amplitude is essentially given by the appropriate extrapolation of the strong KE ~v vertex times
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the matrix element for E, -vacuum transition (which we will denote by f~ mA ), while the pv spuri-
on v&~ will similarly be given by

v =(g/v2)[d(D -iD )+f(F -iF )]. (f m. /&2m ).
Zg

In the present analysis we treat f~ as a parameter. "
Writing the hyperon-decay matrix element in the general form

2
M(o —P+v ) =—-iu (V+Cy )u

p 5 n'

it is straightforward to write down the various V and C amplitudes using Eqs. (14)-(20). Two such
typical amplitudes are

, 2 "' -1-2 ' 6-N 2 1- )(1-2 ') N Z-
1

1 "2 (-1-2f) N A-2(l-f)(1-2f) -N

(20)

(21)

On the right-hand sides of these equations, the
particle symbols denote the corresponding phys-
ical masses.

Thus all the pv and pc amplitudes are given
in terms of three parameters (g', f', and f~ ).
We vary f between'2 0.3 and 0.4; on the whole
the results are found to be insensitive" to this
variation. The theoretical prediction together
with the experimental values are shown in Ta-
ble I. The fit given is one of the best that we
are able to find and corresponds to a choice'
of g'=-6x10 ~ MeV, f'=6, and f~,m~ =1.4

x10 ' MeV with f=0.34. As remarked earlier,
the fit in Table I is markedly better compared
with that obtained before" by Brown and Som-
me rf ield. 3

The following comments are of interest with

regard to the results shown in Table I:
(1) The correction term (K'+K') that was

dropped in Ref. 3 makes significant contribu-
tion to the pc amplitudes. The reason for this
is that the main terms B' and B' are always
opposite in sign (see Table I), while the terms

Table I. Decay amplitudes. a

p -wave amplitude +B2 -(z'+z') ETC Theory
Total

Expt.

C(A )x1O'
C(=:)x10'
C(Z ) x1O6

C(Z++) x 106

[c(A )+2c(= )]
H~cc, ')) -'

4.9—3.8
—0.7+ 2.4
—2.6+ 2.4

7.0- 5.0

0.46+ 0.42
—0.04- 0.18

0.20—0.25

0.95+ 0.45

0.08
-0.02
—0.04

0

2.1
1.5

—0.3
3 4
1.10

2.3
1.4

—0.03 + 0.08
4.1
1.02

s -wave amplitude B -K1 B —K ETC Theory
Total

Expt.

V(A ) x10'
V(" ) x106
V(Z ) x10'
V(Z++) x1O6

[V(A ) + 2V( )]
x [&3V(Z,+)]—'

—0.12+ 0.13
0.08—0.09

-0.07+ 0.06
0.05—0.06

0.03- 0.03
0.01—0.01

—0.02+ 0.02
—0.05+ 0.04

-0.27
0.49

—0.57
0

—0.26
0.48

—0.58
-0.02

1.02

—.0.33
0.43

—0.40
0
1.08

aColumns 3 and 4 give the correction terms for the pc amplitudes, while columns 2 and 3 denote the correction
terms for the pv amplitudes.

N. Cabibbo, Rapporteur's talk at the Proceedings of the Thirteenth International Conference on High Energy
Physics, Berkeley, California, 1966 (University of California Press, Berkeley, 1967).
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C(A ) +2C(:" ) 11.2-12.9f'
(22)

vSC(Z, ) 5.7-11.4f'

The above ratio is unity for f' =4 and contin-
ues to be nearly unity (within 12%) for any
higher value of f'. This shows that the reason
for the validity of the sum rule for pc ampli-
tudes is related to typical special values of
baryon masses, and to the d/f ratios for the
BBP coupling as well as for the pc spurion.

(4) We have introduced SU(3) breaking only
into those entities which vanish in the limit
of SU(3), namely mass splitting and the pv

spurion, while we have used SU(3) symmetric"
values for the pseudoscalar' baryon-meson
coupling and the pc spurion. These latter en-
tities are finite in the limit of SU(3) and the
corrections arising due to SU(3) breaking in

them may hopefully be small. The discrepan-

K' and E' always [except in case" of C(Z )]
have the same sign and the sum (K'+E') has
the right sign relative to (8'+8') so as to im-
prove'7 the agreement with experiments.

(2) The corrections arising due to the finite-
ness of the pv spurion are not as important
as that due to the mass-splitting effect. One
can place a rough upper limit on the value of
fg (i.e., f~ mA. —-6 x10 ' MeV) by demanding
that the predicted amplitudes fit their observed
values at least to within, say, 30%. This up-
per limit is consistent with previous estimates"
of f~,. Suffice it to say that, even for this up-
per limit, the corrections due to the pv spu-
rion are not more than 151"of the correspond-
ing observed values of the amplitudes.

(3) The fit shown in Table I satisfies the I.ee-
Sugawara' sum rule quite well for the pv as
well as pc amplitudes. One can foresee the
approximate validity of the sum rule for pv'9

amplitudes on general grounds, since for these
amplitudes the ETC terms satisfy the sum rule
exactly, while the B~ and E~ terms satisfy the
sum rule separately in the approximation of
the sums of masses being equal (i.e., A+M
= Z+N = =+A). For the pc amplitudes, on the
other hand, while the ETC terms satisfy the
sum rule exactly, neither the B~ nor the A~

terms satisfy the sum rule separately (The.
B~ terms satisfy the sum rule only in the lim-
it of the bad approximation~ A-N = Z-N = "
-A.) In spite of this the term (8~-E~) leads
to the following ratio for the two sides of the
sum rule":

cies in Table I may partly be attributed to such
corrections and partly to the use of PCAC and
the soft-pion extrapolation.

To conclude, the results suggest that the
current-algebra approach can account for the
main features of both the pv and the pc nonlep-
tonic hyperon-decay amplitudes reasonably
well, provided the ratios of the pseudoscalar
baryon-pion couplings are nearly SU(3) sym-
metric.

One of us (J.C.P.) would like to thank Pro-
fessor M. G. K. Menon and Professor B. M.
Udgaonkar for the hospitality extended to him
at the Tata Institute of Fundamental Research.
The other (A.K.) would like to thank Professor
B. M. Udgaonkar for his constant encouragement.

Note added in proof. —It should be noted that
if one chooses to use pseudovector coupling
for the baryon-meson vertices instead of pseu-
doscalar coupling, as used here, the E& terms
vanish for both the pv and the pc amplitudes;
however, in this case the Born terms EP incor-
porate the (AM/2M) corrections of the pseu-
doscalar theory exactly. The use of SU(3) for
the pseudovector'~ couplings leads to results
which differ from those of the pseudoscalar
theory inasmuch as the ratios of the sums of
baryon masses are not SU(3) symmetric. Al-
though this does not alter the qualitative fea-
tures (i.e., the relative signs of various terms)
as mentioned in the text, the over-all fit is
found to be worse than that given in Table I.

*On leave of absence from the University of Mary-
land, College Park, Maryland.
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