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It is shown that fixed poles in the l plane are forbidden for strong interactions unless
there exist moving branch points with very specific properties. A fixed pole with protec-
tive cuts is considered as a possible model for diffraction scattering.

Several years ago, we formulated a theorem
concerning fixed poles in the complex angular-
momentum plane. '~' Assuming the validity of
some form of elastic unitarity in the neighbor-
hood of a fixed pole at ~=A.„we used the con-
tinuity theorem for functions of two or more
complex variables' in order to show that such
poles are generally not allowed.

It is the purpose of this paper to show that
there exists a very special, but physically most
interesting, case wher e a fixed pole at a point

Ao is made possible by a close ly associat-
ed set of moving branch points4 A. = o~(S) [S
=S~(A.)], which have the following properties:
For every relevant two-particle threshold 8
=S„ there is a moving branch point S=SC(A).
At X =XO, the branch point SCUD) coincides with

S, and has the same character as the thresh-
old. A threshold is relevant if the amplitude
loses the pole by continuation through the cor-
responding cut into a secondary sheet. On the
basis of these results, we propose that a fixed
pole with protective cuts may be used for the
construction of a model for nonshrinking dif-
fraction peaks with constant asymptotic cross
sections, ' which otherwise would be difficult
to obtain within the framework of causal dis-
persion theory. 6

In order to exhibit the special relevance of
the branch points Sc(A), we prove in the follow-
ing that in most cases fixed poles are forbid-
den even in the presence of moving branch cuts
which overlap the right-hand cuts in the 8 plane.
For reasons of simplicity, we consider the
scattering of spinless particles with mass p,

(e.g. , Trm scattering), and we concentrate on
the elastic threshold at S=4p, '. Let F(S, g) =F+(S,
X) be the analytic function which is uniquely
determined by F+(S, l) =Ff(S) for /= even, /&N
It follows from general postulates that there
is a number N such that for Reh. &N the func-
tion I is analytic in S and ~ with the usual fixed
cuts along the real axis in the 8 plane. ' It sat-
isfies the continued unitarity condition due to
the ela, stic threshold at S = 4 p, '. We write this
condition in the analytic form

F —'(S, A.) = F '(S, X) + 2ip(S),

where p(S) = [(S—4 p. ') IS]"', and the subscript
II indicates the amplitude in the second sheet. '
If we continue I into the region Rek. &N, A. -de-
pendent singularities can appear in the phys-
ical sheet of the S plane. Moving branch points
can only come up through inelastic thresholds
like Sl= 16'.'.' Let Sc(&) be such a branch point,
and suppose that F (S, A) has a fixed pole at A

= A, for S in the physical sheet (I). It follows
from Eq. (1) that Fll has no such pole at X = I,.
If we assume that ISC(XO) —4y. ' I & e, e & 0, we
can continue Fll for all I A. —AOI & 5(e) from sheet
II into sheet I, and we find that I' is regular
at X=A, Hence we see that the pole is not al-
lowed on the basis of the continuity theorem
We note that our proof is applicable even if
S&(AO) is real and to the left of the threshold
8=4', ' so that the elastic cut is completely blank-
eted. Our argument is also applicable to oth-
er nonmoving singularities with S-independent
character, provided there exists a sequence
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1A„t-X0 such that F '(S, A )-0 for n-~. This
includes essential singularities of fixed char-
acter.

The arguments given above can be general-
ized to all cases where the unitarity condition
makes it possible to find a continuation in s
along which the pole would disappear. Simple
exceptions are amplitudes involving weak or
electromagnetic interactions up to a finite or-
der in the coupling constants and certain re-
actions with coupled spin channels. '

We now consider the special case where SC(A0)
=4p.'. It is instructive to introduce the func-
tion

q -'(s, x) =F '(s, x)-+ ip(s),

which does not have the fixed square-root cut
for 4p, '&S & SI." If F has a fixed pole at A. = A.„
we find the relation

p
—'(S, X,) = ip(s),

which requires that y ' has a branch point of
the type (S—4p')"' at A = A, For SC(A0) 0 4p. '
this is not possible, as we have seen before,
but if SC(&0) =4@,', the function y '(S, Ao) can
have a branch point corresponding to p(s), pro-
vided the moving cut has the same character
for X=~, as the unitarity cut."

The partial wave function F(S, A) may have
further two-particle thresholds for S& 4p, ', like,
for example, the EK threshold at S =4m&'.
In this case, we must generalize our consid-
erations to the many-channel problem. ~ If
the fixed pole is also present in elements of
the transition matrix other than F, like for in-
stance in G(m+n -K+K) and K(K+K-K+K),
then we find that additional moving branch cuts
are needed in order to protect the fixed pole.
At A. = &o, these cuts must coincide in position
and character with the corresponding higher
two-particle cuts.

Without a fixed pole at A. =+1, it is rather
difficult to construct a simple model with a
nonshrinking diffraction peak and a constant
asymptotic total cross section. But we can
allow such a pole provided we also introduce
the required moving branch points like nC(S)
with nC(4m ') = 1 as well as others for higher
two-particle thresholds. With the fixed pole
and the cut nC(S), we obtain for the asymptot-
ic form of the invariant amplitude F(S, t) in

the t channel

C
i+exp[ —i~n (S)]

F(S, t) —ib(s)t+ C(S)

xt C (lnt) +.n S)
(4)

where b(s) and C(s) are real, and P depends
upon the character of the branch point for S
~0; we have P = —,

' for a square-root cut. Since
nC(4m ') =1, we may expect that nC(0)& 1.
It is a nice feature of the fixed-pole diffraction
model that the protective cuts, and hence al-
so the pole, are intimately connected with in-
elastic processes. The asymptotic form (4)
gives rise to constant elastic cross sections.
Apart from the question of shrinkage, the mod-
el can therefore be distinguished from a Reg-
ge-pole model with a Pomeranchuk trajectory,
which would give rise to a logarithmically de-
creasing elastic cross section. At nonasymp-
totic energies, the cut contribution may cause
characteristic effects for specific processes.
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It is shown that the second-order radiative corrections to 7t P decay are finite, provid-
ed one assumes a V —A interaction and a current algebra constructed from spin-2 SU(3)
triplet fields with the quantum numbers of A, , and ",or 0, ™0,and ",and 3-in-
tegral hypercharge; or, equivalently, &+A together with p, g, A or p, ~, 0'+ triplets.

Bjorken' has shown that the chiral U(6)SU(6)
algebra of current densities implies a logarith-
mically divergent second-order electromag-
netic correction to the process ~~- m'+e~+ v,
independent of the nature of the strong inter-
actions.

One may take three points of view towards
the occurence of such divergences. The first
is that of conventional renormalization theory'.
That is, the renormalized coupling constants
and masses are finite, but not calculable. The
approximate equality of masses in isotopic
multiplets would then appear as a lucky acci-
dent, unrelated to the smallness of the fine-
structure constant. The second is that quan-
tum electrodynamics and/or weak couplings
must be modified at high energies, so that the
divergences are cut off, and the corrections,
in practice, are small. This possibility may
well occur, but in the present Letter we reject
it in favor of a third, that is, that the logarith-
mic divergences in fact do not occur with con-
ventional quantum electrodynamics. In this
spirit, we restrict ourselves to consider only
point Fermi couplings.

We then ask, how must the U(6)jgIU(6) alge-
bra be modified to give finite answers? A strong
hint, as observed by Berman and Sirlin, ' is
contained in the finiteness of the e corrections
to p, decay. They observe that a V-& interac-

tion with an initial negative fermion decaying
to an electron and neutral fermions is finite
to second order in n and lowest order in the
strong interactions. Equivalently, a V+A in-
teraction with an initial neutral fermion decay-
ing to an electron, a positive fermion, and
a neutral fermion is also finite, since it is
related to the first alternative by crossing.
The algebraic modification of U(6)cgIU(6) re-
quired to generalize this observation consists
in adding an SU(3) singlet to the electromag-
netic current density. The new equal-time
commutation rules are

[V (x),A. (y)] =xi e . V (x)5(x—y),ujl l

lV (x), V. (y)f=~f ~ . V (x)6(x-y),ujl l

for k and j diff er ent space components, and n
a charge-raising or -lowering SU(3) index which
occurs in the semileptonic weak processes.
The + sign refers to a V-A or V+& weak had-
ronic current. No commutators of charge den-
sities with each other or with current densi-
ties need be modified.

It is obvious that the relations (1) and (2) can
be achieved in a model where the currents are
made up (in the V-A case) of a (A, :-0, :- )-like
SU(3) triplet~ with quantum numbers I = (0, &,
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