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We show that the nonrelativistic quark model leads to an exceptionally simple sum
rule involving a form factor determined by high-energy inelastic electron-proton scat-
tering. The simplicity of this result appears to be a unique consequence of the peculiar
quark charges.

In spite of its breathtaking crudity the naive
quark model enjoys some measure of success. '
Detectable predictions that really characterize
the model's remarkable basic premises are
therefore desirable. Here we shall construct
a sum rule from the electron-proton cross sec-
tion that depends critically on the particular
fractional charges usually ascribed to quarks.
The argument relies on the nonrelativistic na-
ture of the model, through not on any of its
finer details. Our prediction Eq. (8) is so strik-
ingly simple that it is hard to resist the con-
jecture that it can also be derived from a more
sophisticated theory of the strong interactions.

Our result stems from the astonishing fact
that the naive quark model implies the complete

absence of charge and current correlations
in the proton. For example, the charge fluc-
tuations are simply

Here p(x) =Q et+(rt —x) is the charge density
and &

~ ~
& the spin-averaged expectation value

in the proton's ground state, while ei and ri
are the charge and coordinate of the ith quark.
Equation (1) is actually a special case of the
following lemma: Let A =QefAf, where At is
an arbitrary operator pertaining solely to the
ith quark, but independent of its charge, and
B another such operator, then
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To prove (2) we note that the hadronic Hamil-
tonian is SU(2) invariant and therefore unchanged
by a permutation of any pair of S=O quarks.
Because the proton is nondegenerate, its state
vector only acquires a phase under such a per-
mutation, whence (AiBi) =(AIB1) for all i, and

(AiBj) =(AIB2) for all it j. Thus

(AB) =(A B )Q e.'+(A B ) g e.e.; (3)

for the proton the first sum in (3) is one, but
the second sum vanishes' Q.E.D.' Equation
(1) now follows from (2) because we use the
continuum normalization (p lp ) = 5(p —p ) in which
case (2m)'(5(r, )) = 1.

It is well known that fluctuations such as (1)
determine the absorption of light by a system. 4

In our problem the electron acts as the light
source. Unfortunately, relativistic electron
scattering is beset by nontrivial kinematic com-
plications. We therefore begin with a purely
pedagogic excercise so as not to hide the es-
sential point. Consider the scattering of a slow
and very massive lepton by a proton. If we
only take the Coulomb interaction into account,
the cross section in the laboratory frame (I
frame) for all processes wherein the lepton
suffers a three-momentum transfer ~ and en-
ergy loss ~ is

& —,
' Q 6((u+m-E )5(&—P )l(nip(0)IA) P. (4)n n

nX

Here rn, and E are the mass and incident en-
ergy of the lepton, rn the mass of the proton,
iA) a proton rest state with helicity A. , In) an
arbitrary state with Q =B= &= I, and Mn, P„
and F~ the mass, momentum and energy of
In), respectively. We wish to evaluate do/db2
and must therefore integrate (4) over m with
~ kept fixed. We now make two further assump-
tions (known as the closure approximation):
(i) E» 4 /2mo, and (ii) (nip lA) is negligible
for highly excited states, i.e. , if IM -ml»
This last assumption is certainly not correct
for a real proton. Nevertheless, once it is
made we can extend the integral to ~ = ~ and
use the completeness of the set In) to obtain

do (27T) (E m() f 3 -lA ~ x(

Recalling (1), we have dv/db. '=2wnnmo/Eh',

which is just Rutherford's formula for scatter-
ing by a point charge. This means that the de-
crease of the elastic cross section due to the
elastic form factor is exactly compensated
by inelastic scattering.

In high-energy scattering the electron's en-
ergy loss must be less than ~, and the exci-
tation energies are comparable with the pro-
ton's mass. The closure approximation is there-

foree

hopeless at fixed ~, and instead one must
work at constant (k&-k&')'= q', where k& and
k&' are the initial and final electron four-mo-
menta. ' Moreover, closure cannot be applied
unambiguously to the cross section itself. The
correct procedure leads to sum rules for form
factors, and we must therefore record the de-
finitions of these quantities. ' In the L frame
the cross section is

d'0 4O'
2 2 6)

, k" cos' —W, (q', v) + 2W, (q', v) tan' —,
dOdk' q4

where ~ is the scattering angle, q'=-4k'' sin'2~,
and v=p ~ q/m, p& being the target's momen-
tum; v is the energy loss in L. I et e& and

u& be space-like unit vectors, furthermore,
let e ~ u = e ~ q = e p = u p = 0, and u ~ q = Q, where
Q = —q . The longitudinal and transverse por-
tions of the hadronic current J'&(x) are then
JL-u J and JT=e ~ J, respectively, and the
corresponding invariant form factors are

W (q', v)=y(2n) fd xe (Z (x)J (0)), (5)T p'

-(v /q )W2(q, v)
2 2 2

=y(2v) fd xe (J (x)J (0)) . (6)p'

Here y =p,/m, and the subscript p indicates
that the expectation value is in a one-proton
state with momentum P&.

Our aim is to integrate 8'2 over v at fixed
q'. In the L frame it is very difficult to do this,
because the energy and momentum difference
between the proton state and In) both depend
on q2 and v. As Dashen and Gell-Mann have
stressed, ' the kinematics is greatly simplified
if one transforms to a frame in which the pro-
ton has a very large momentum. ' To be pre-
cise, let M be the largest mass that contributes
significantly to fdv W, at the specified value
of q', and v the corresponding v, i.e., v= (I'
—q'-m')/2m; then we require y» v/Q, and
we shall call a frame of this type an I" frame.
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In E we are free to choose q, f, and n to suit
our needs, provided of course that q' and q p
have the desired values. A convenient choice
is p & = (ym, 0, 0,pz), q & = (v/y, Q) with Q in the
x-y plane, IQI'=-q', andu&=(0, —Q). U IP)
is a, one-proton state and (n I JIp) some ma-
trix element in an E frame, then7 to lowest
order in 1/y the energy difference between
Ip) and In) is (Mn'-m'-q')/2my= v„/y, and
the square of the three-momentum transfer
equals -q'. Taking advantage of these facts,
and of our definitions, we can write the right-
side of (6) as

8 W, (q2, v) 1 o(v)&q', (2m)'o. vq'=0

where o(v) is the total photoproduction cross
section. Thus (8) also implies

(10)

4 p

4v 7TA 4
o'(v)—=, m—(x')+1-p, ' =0.42 mb. (11)

v m 3 p

(9) we have used the empirical fits~ GE =GM/gp
= (1+ 1.4t) ', where t = —q' (BeV/c) '. Equa-
tion (8) is our main result. "

A photoproduction sum rule follows from (8)
because

y (2w)'z Q 5(v —v )

A.yg

x (pA. I (d x e Q J(x) In) (n IQ J(0) IpA. )

These matrix elements can be simplified be-
cause current conservation implies (p IQ J In)
= (vn/Qy)(p!p In) . Keeping Q constant fixes
q' in F, and we can now integrate freely over
v. Our final result is then

In spite of its appearance this expression is
Lorentz invariant.

This seems to be as far as logic can take
us. If the integrand in (7) contained a current
commutator, current algebra would allow an
unambiguous, Lorentz-covariant determina-
tion of the expectation value. But if we trans-
form an equal-time product from E to anoth-
er frame, it looses its equal-time character,
and detailed dynamical information is then re-
quired for the evaluation of the expectation
value. We are therefore forced to throw cau-
tion aside: We assume that we can evaluate
the right side of (7) with the nonrelativistic
quark model. Once this is accepted we can
transform to any frame (e.g. , to L) and retain
the equal-time property of the operator product.
Equation (7) is then evaluated by using (1) once
more. After separating out the elastic contri-
bution we obtain

'(q') -(q'/4m')G '(q')
dv TV, (q', v) = 1—

Vo

1+2 2t
(1—0.29t) (1+1.4t)4'

(8)

(9)

where v, is the inelastic threshold. In writing

f dv R' (q, v) = (2m) fd x e (p(x)p(0)) . (7)

Evaluation'2 of the integral in (11) with the da-
ta below v= 5 BeV gives 0.65 mb. The agree-
ment between theory and experiment is there-
fore only qualitative.

How is one to assess our sum rule& Two
extreme points of view are: (I) The naive quark
model is idiotic, and whatever success it has
had is accidental —hence (8) should be ignored.
(II) The model has some overlap with the truth,
and when it is used judiciously in the Fubini-
Furlan frame, this overlap is actually quite
appreciable; hence one should look for a de-
rivation of (8) that a well-educated person could
believe. Between these extremes a spectrum
of possible attitudes suggest itself. Thus Bjor-
ken' has pointed out that the naive model can-
not account for diffraction production of p',
which is the dominant electrodynamic process
at high energy'; in fact, the sum rule eonverg-
es very slowly at best because of this process.
One could also be more conservative, and say
that the naive model has too few degrees of
freedom to account for anything beyond the pro-
duction of nucleon isobars. If one is of this
opinion, one would isolate these resonances

from the inelastic cross section to see wheth-
er they themselves satisfy the sum rule. The
sign and magnitude of the discrepancy between
(11) and the present data indicate that this may
be the most reasonable position [aside from
(I), perhapsj. Hopefully, forthcoming exper-
iments on electroproduction will settle the is-
sue.

I am greatly indebted to L. N. Hand; his pro-
vocative questions led to this investigation.
I have also received very useful suggestions
from K. Berkelman, P. A. Carruthers, H. Gold-
bert, and D. R. Yennie. I should like to thank
J. D. Bjorken for communicating his own re-
sults prior to publication, and for his enlight-
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ening comments on an earlier version of this
paper.
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