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8Under the above experimental conditions, if the dis-
tribution function for the transverse velocity assumes
the form 6(V-V~), the electron's driven gyrofrequency
must be u~'. Collisions will randomize this distribu-
tion on a time scale &1 @sec in this experiment; howev-
er, the confinement time of the plasma is itself &10
psec. From the mode spacing of Fig. 2. we deduce

10 eV which is about four times the unper-

turbed mean electron thermal energy (determined by a
Langmuir probe). Thus the assumption of the cold plas-
ma model is not unreasonable.
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An electrostatic wave propagating into a region of decreasing electron density is generally taken
to be absorbed with small reflection, ' as a consequence of the onset of strong Landau damping. The
knowledge of the reflection coefficient, however small, is important in the attempt to suppress con-
vectively unstable waves by limiting the plasma size. For example, there have been a number of
calculations of the critical length of a mirror machine subject to a loss-cone instability. ' ' These
calculations have yielded small reflection coefficients. However, they have omitted certain effects
of electron reflection at the sheath which we will show below may, for certain density distributions,
lead to a coefficient of order one.

As a basis for calculation, we will adopt the model used by Berk, Rosenbluth, and Sudan (BRS).'
This is a one-dimensional plasma with electron density uniform for -~ &x & 0 but going to 0 for x -+~,
and a plasma wave impinging from the left whose frequency is slightly above &up, the value of the
plasma frequency for x &0. In the region where the plasma wave is only weakly damped, we will
assume that the static potential, -mC(x)/e, is slowly varying on the scale of the plasma wavelength.
Further to the right, where the wave is heavily damped, the potential may have arbitrary variation.
In this latter sense, we generalize the model of BRS in which the potential was taken to be slowly
varying everywhere.

When all quantities vary only in the x direction, BRS obtain the following equation for the perturbed
electric field h(x):

h(x) = —. —

J
dE J~ dx' h(x') exp l i~~ ~„) +~

dx' h(x') expl i&u)

( fxo dx" ) (xo (
-exp 2i&uJ ~„)~)

dx' h'(x') exp~ i~

In Eq. (1) we have set E = —,'v'+4(x) and v(x) = &2[E-C(x)]'~' and defined x, to be the turning point,
v(x, ) = 0. E(E) is the Maxwell-Boltzmann distribution. All time-dependent quantities have been tak-
en to vary as exp(-i&et) with Im&u &0. Whenever appropriate, it is understood that the limit Im&u -0
is to be taken.

Because of the assumed properties of C (x), we look for solutions of Eq. (1) of the form

h(x) = h' (x) exp(if kdx')+ h' (x) exp(-ij kdx'), (2)

where
1 dh 1dk 1 dC

+
kh dx Pdx kC dx

within the region of weak damping. The local wave number k(x) will be taken to be real, and such
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effects as spatial Landau damping will be included in $+(x). For weak damping this is equivalent
to dealing with complex k, but proves more convenient.

After substituting Eq. (2) into Eq. (I), we integrate by parts twice the first two x integrals of Eq.
(1) in a manner identical to BRS except that we disregard the contribution from the point xp. [For
all electrons except those of very small E, x, is well within the sheath and so $(x,) is negligibly
small. ] We then introduce the function

p-«(l«, k, «) -=1— --
H«J dE ~(), ~ ( )

—
), ~ ( ))l,

where Re denotes the real part, and here, as below, the limit Im~-0 is to be taken. By defining
k(x) to satisfy

e (p), +k (x ), x) = 0,

the nominally lowest-order result of the integration by parts cancels out. The next order gives an
equation containing both d $+/dx and d $ /dx,

( " ')d x ) d x x
expl i kdx') (n '$ —)-exp -i kdx' l

—(n' '$ )= -wn' '$ exp i kdx' vn'-'$ expl -i kdxiil
p / dx +

p ) dx + p i p

BE ( xp dx" xp ( xdx" )
dE expl 2iu „dx' $(x') exp i&a „ l+O($ "),

where

BE 1 1

Re dE
BE (k-&u/v)' (k+&a/v)' '

p
BE mi ( coi

v(x) = — dE B k ——I+51 k+ —l,
p)n C, (x) BE vj ( vf '

and in Eq. (4) we have dropped small imaginary terms additive to n. In Eq. (4) the term O($+") in-
dicates terms formally of order 5' which are the result of the integration by parts. The contribution
of these terms to the reflection coefficient has already been calculated, ' so we will not consider them
here.

In order to obtain separate equations for $+ and $ from Eq. (4), we invoke an averaging process
and equate to 0 separately the coefficients of the rapidly varying phase factors exp(+if kdx') The.

0
integral with respect to E on the right-hand side of Eq. (4) will contribute to $+ or $ only when the
phase factor in the integrand is the same as that of d$+/dx or d$ /dx, respectively For th. e chosen
monotonic character of C (x), this situation does not occur for $+, so we obtain

gP) =A', (0)( ) e«p(-f «d«I

in agreement with previous authors. '~' The substitution of Eq. (7) into the E integral on the right-
hand side of Eq. (4) will give a contribution which has the same phase factor as d$ /dx, thus

&u
' BF ( xpdx" x—(n'i'$ ) =gn"'$ + n-'"I dQ exp2il &~ +

dx — — ~ &@» ( 3x v(x")

(xp ( x dxi«x
x i dx' $ (x') expil (u „+ kdx" I.
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To show that the final term of Eq. (8) has the claimed slow spatial variation, we perform the x in-
tegration approximately as

xf
dx'8 ' expo w + kdx"

where from Eq. (7) we have taken the dominant x dependence of (p+(x) to occur through the damping
decrement K (to be justified later) and chosen Im(k) so as to give convergence of the x' integration
in each direction away from the point x. Note that where v =(k)/k, the phase factor in Eq. (8) is slow-
ly varying in x. Because E(E) in Eq. (8) is slowly varying in E compared with the peaked function
of Eq. (9), it may be evaluated at E= —,'((k)/k)'+C. Using this and Eq. (9), Eq. (8) may be integrated
to give

(0)
I ( Ix ( ~xo dx" ) d

p (p) =J ckexP(kij kdx" exP(2itej
( „)) &

exP -2 Kkx"), (10)

where

We wish to evaluate approximately the integrals appearing in Eqs. (10) and (11). Of the three func-
tions appearing in the x integrand of Eq. (10), the third is sharply peaked relative to the product of
the first two. This latter product varies on a scale A '5 whereas the peaked function varies on a
scale ((kJ'/k'VZ')k '5 around the maximum x~, where

dK/dx l = 2K'(x ),x=xm m '
x

and VT is the electron thermal velocity. Thus we obtain approximately for Eq. (10)

(0 (0) ~xm j &x0 dx «

& ( )
= exp 2-i) (k+iK)dx' expl 2iru)

+ 0

From Eq. (6) and the scaling following Eq. (2), we see from Eq. (12 that

(Kk ) - (u' jk'V ') 5 - 5 ln5
x=xm T

(i2)

for small 5, justifying our assumptions that the damping was weak and that the dominant spatial vari-
ation of $~(x) occurred through exp(+ f Kdx ).

The smallness of K(x~) is useful also in evaluating the E integral in Eq. (11). Let L~ =x0-x~,
i.e., the distance to the point of reflection from x~. If k(xm)L~ «(51n5) p the exponential in the
integrand of Eq. (11) is slowly varying in E relative to the peaked function and the integral becomes
approximately

to be evaluated at x =x~. This is just the exponential of the phase shift into and out of the sheath
region for particles traveling at v = (k)/k(X~) at xm. When k(x~)L~ - (5 1nfI) or larger, this per-
fect reflection will be reduced by phase mixing. However, even in this case, this effect may dom-
inate the reflection coefficient based on the O($~") terms in Eq. (4).

%hen we allow for reflection at an angle to the sheath through the inclusion of 0& g 0 and use as
variables the perturbed potentials y~ rather than S~, our result, Eq. (8), is changed to read

(14)

11.21

2(d '(d 8I" xo gag x Kv—(a"'y )=Ko.'"y + „, d'v exp2i ((u-k v ) „+ k dx"
V "

0 x ~-k V -k V +K' Vx x x x
Treating this equation in a manner similar to the above will yield additional phase mixing due to k&.
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Equations (3), (5), and (6) are modified as in Ref. 5.
The mechanism of reflection at the plasma sheath should be useful in further clarifying the descrip-

tion of Tonks-Dattner resonances in a positive column, for which Leavens has obtained numerical
solutions to the Vlasov equation. As properties of plasma waves in collisionless, nonuniform me-
dia, there may be applications of this and similar effects of the static electric field to certain solar
and astrophysical phenomena, such as the plasma oscillations thought to give rise to type-III solar
radio bursts, ' the properties of the interaction of the solar wind with the ionized gas around the earth, 9

and k.8, gO loss-cone instabilities in the magnetosphere.
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