PHYSICAL REVIEW LETTERS

19 JUNE 1967

TWO-PHOTON	EMISSION	FROM THI	E SINGLET	METASTABLE ST.	ATE

OF SINGLY IONIZED LITHIUM†

G. A. Victor and A. Dalgarno

School of Physics and Applied Mathematics, The Queen's University of Belfast, Belfast, Northern Ireland (Received 24 May 1967)

Lipeles, Novick, and Tolk¹ have used coincidence counting techniques to detect the two-photon decay of the metastable $2^2S_{1/2}$ state of singly ionized helium. The theoretical lifetime against two-photon decay is 1.9×10^{-3} sec.² The metastable 2^1S state of singly ionized lithium may be a suitable case for investigation also. The lifetime τ for two-photon decay from a state φ_i of energy E_i to a state φ_f of energy E_f is given by³

$$\frac{1}{\tau} = \frac{1}{2} \int_0^{\nu} i f_{d\nu} A(\nu),$$

where $\nu_{if} = (E_i - E_f)/h$ and $A(\nu)d\nu$ is the probability that a photon of frequency ν is emitted in the frequency interval ν , $\nu + d\nu$. $A(\nu)d\nu$ can be written as the infinite summation

$$A(\nu)d\nu = \frac{1024\pi^{6}e^{4}\nu^{3}\nu'^{3}}{3h^{2}c^{6}} \Big| \sum_{m}^{N} \langle f | \sum_{j=1}^{N} z_{j} | m \rangle \langle m | \sum_{j=1}^{N} z_{j} | i \rangle \Big(\frac{1}{\nu_{mi} + \nu} + \frac{1}{\nu_{mi} + \nu'} \Big) \Big|^{2} d\nu,$$

where $\nu + \nu' = \nu_{if}$ and z_j is the z coordinate of the *j*th electron of the *N*-electron system. If *H* is the system Hamiltonian and we define χ_i by the equation

$$(H - E_{i} + h\nu)\chi_{i}(\nu) + \sum_{j=1}^{N} z_{j}\varphi_{i} = 0, \qquad (1)$$

 $A(\nu)d\nu$ can be written alternatively as

VOLUME 18

$$A(\nu)d\nu = \frac{1024\pi^{6}e^{4}\nu^{3}\nu'^{3}}{3c^{6}} \left| \langle \varphi_{f} | \sum_{j=1}^{N} z_{j} | \chi_{i}(\nu) \rangle + \langle \varphi_{f} | \sum_{j=1}^{N} z_{j} | \chi_{i}(\nu_{if} - \nu) \rangle \right|^{2} d\nu.$$

We have solved (1) by minimizing the functional

$$J(\nu) = \langle \chi_i(\nu) | H - E_i + h\nu | \chi_i(\nu) \rangle + 2 \langle \chi_i(\nu) | \sum_{j=1}^N z_j | \varphi_i \rangle$$

1105

NUMBER 25

adopting for the eigenfunctions of the $2^{1}S$ and $1^{1}S$ states the variational representations

$$\rho_{i}(\tilde{r}_{1}, \tilde{r}_{1})$$

$$= \exp\{-(\alpha_{i}r_{1} + \beta_{i}r_{2})\} \sum_{l,m,n} a_{lmn}r_{1}^{l}r_{2}^{m}r_{12}^{n},$$

appropriately normalized and symmetrized, and using as the trial form of $\chi_i(\nu)$

$$\chi_{i}(\vec{r}_{1},\vec{r}_{2}|\nu) = \exp\{-(\gamma r_{1} + \delta r_{2})\}$$

$$\times \sum_{l,m,n} b_{lmn}(\nu)r_{1}^{l}r_{2}^{m}r_{12}^{n}Y_{1}^{0}(\hat{r}_{1})Y_{0}^{0}(\hat{r}_{2})$$

appropriately symmetrized.

Up to 50 terms were included in φ_i , φ_f , and χ_i . The results show that the emitted photons have a continuous distribution broadly peaked at about 30 eV. The calculated lifetime against two-photon decay is 5.15×10^{-4} sec, though there remains some uncertainty in the third significant figure.

We are indebted to Mrs. J. Taylor for the use of a number of her computer programs.

†Research sponsored by the U. S. Office of Naval Research for the Advanced Research Projects Agency, Department of Defense, under Contract No. N62558-4297.

¹M. Lipeles, R. Novick, and N. Tolk, Phys. Rev. Letters 15, 690 (1965).

²J. Shapiro and G. Breit, Phys. Rev. <u>113</u>, 179 (1959).
 ³G. Breit and E. Teller, Astrophys. J. <u>91</u>, 215 (1940).

INFLUENCE OF He⁴ ON EXCHANGE-LATTICE RELAXATION IN SOLID He³

R. P. Giffard and J. Hatton Clarendon Laboratory, Oxford, England (Received 1 May 1967)

Previous papers have reported approximate agreement¹⁻³ between experimental determinations of the exchange-lattice equilibrium time in solid He³ and the theory of Griffiths.⁴ We have made measurements at molar volume 19.97 ± 0.03 cc in the temperature range 0.4 to 0.6° K which show that this agreement was fortuitous and that the equilibrium time is strongly dependent on the He⁴ content of the sample. Our results demonstrate an extra relaxation process with a rate proportional to He⁴ concentration and a temperature variation between T^{8} and T^{9} .

The results will be considered with reference to the "three bath model" proposed for solid He³ by Garwin and Landesman.⁵ In this region of temperature, however, the measured Zeeman-exchange relaxation times^{1,2,6} are always at least an order of magnitude smaller than the observed Zeeman-lattice relaxation times, so the Zeeman and exchange systems may be considered as intimately coupled. In the bcc phase under these conditions it has been shown¹ that the signal recovery time T_1 should be given by

$$T_1 = \tau_{XL} \{ 1 + F^2 / (3J^2) \}, \tag{1}$$

where τ_{XL} is the exchange-lattice relaxation time, F is the Zeeman frequency, and J is the exchange frequency.

In the present experiments T_1 has been measured at various frequencies between 1.27 and 4.5 MHz for samples of He³ containing different amounts of He⁴. For each sample, values of T_1 at some fixed temperature are plotted against F^2 ; the results are compatible with Eq. (1), and we deduce that J=0.97 MHz fits each sample.⁷ This result has been used to derive τ_{XL} values from the measured values of T_1 . It should be noted that all signals after saturation followed a normal exponential recovery with time.

Three processes, whose transition probabilities may be assumed to add, are expected to couple the exchange system to the lattice giving

$$(\tau_{XL})^{-1} = \eta_D + \eta_{SP} + \eta_{TP}, \tag{2}$$

where η_D , η_{SP} , and η_{TP} are the rates for a diffusion-induced process, a single-phonon process, and a two-phonon process, respectively.

The diffusion process has been considered by Richards.⁸ For the bcc phase his result