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We show that a Regge trajectory, e(&), cannot have the property Rem(s) + as s +
without leading to inconsistencies with two features of dispersion theory and Regge pole
theory: that both n (s) and the reduced residue function, y(s), are analytic in the cut
plane with one cut, and that they and the partial wave amplitude, a(l, s), for Hei = —2,
are bounded for large i s i by exp[i s i

2 e].

Recently, there have been several papers'~'
that dealt with Regge trajectories that approach
infinity as s-+~ and thus lead to an infinite
sequence of Regge r ecurr ences. To this pur e-
ly theoretical interest one can add one exper-
imental fact. Some of the known resonances,
if interpreted as Regge recurrences, seem
to lead to Regge trajectories that, up to the
energies studied, increase linearly with s.

It is almost obvious that if we have a Regge
trajectory, n(s), such that Ren(s) —+~ as &

-+~, the Mandelstam representation with a
finite number of subtractions can no longer
be valid for any scattering process in which
such a trajectory can contribute to any chan-
nel. The introduction of such trajectories in
more than one channel will also make the der-
ivation of a crossing-symmetric Regge repre-
sentation, given earlier for the usual case,
not feasible. In fact, if trajectories do not turn
back for large s, t, and &, it would seem at
first sight that there would be a basic contra-
diction between crossing symmetry and Regge
behavior unless we impose strong conditions
on the residue functions as s- ~. For exam-
ple, in the model given in Ref. 1, Van Hove
sums up an infinite number of single-particle
exchange terms in the t channel to obtain a
Regge term proportional to Po (t)[l + 2s/(t-4)].
For large s this term leads to the correct Reg-
ge behavior. However, in a crossing-symmet-
ric case one could also sum an infinite number
of single-particle terms in the s channel. This
would give a term proportional to P~(s)[1+2t/
(s-4)]. The behavior of this term for large
s will depend on how Ren(s)-+~ as s-+~
and on how fast the residue functions can de-

crease with s. It is not a priori obvious that
this s-channel term could not be bigger than
t-channel term as s-+~.

The question naturally arises under what
conditions can such trajectories exist~ In this
short note we show that they are not even con-
sistent with some of the most common features
of dispersion relations and Regge-pole theory.
These features are the following:

(i) For fixed finite t, the scattering ampli-
tude f(s, t) is analytic in the cut s plane, and

is bounded by a polynomial in Ist as Isl- ~.
(ii) At fixed physical c.m. angle in the s chan-

nel, cos8 = z, -I «(+ I, f(s, cos&)/s+- 0 as
S -+.

(iii) The partial-wave amplitude a(l, s) sat-
isfies the necessary conditions for the valid-
ity of the Sommerfeld-Watson transformation.
We also assume, for ~ not near a Regge pole,

N
a(l, s)/s -0 as s-+~.

We ca.n even weaken (i)-(iii) considerably
without affecting our main results. We can

1
replace s by exp(is I2 —s) and still our con-
clusions will be the same.

To start the problem let us start with the
usual Watson-Sommerfeld transformation for
equal-mass scattering. We write

f(, )f(, )

(2o.'+ 1)P(s)
[

sinn n (s) o. (s) o. (s)

where we have assumed for simplicity that we
have only one Regge pole in the s channel. Now

for fixed physical s, 0«(1, and s) 4 the in-
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tegral defining the background term fB(s,z)
converges absolutely. Using (iii) we see that

IfB(&,z)

+~+Op
=0, 0(z (1. (2)

It follows from (1) that for fixed s & 4, fB(s,z)
is an analytic function of s regular in the cut
z plane, that fB(s,z) - lz I

"' as lz I
- ~. We

can then write an unsubtracted dispersion re-
lation in z at fixed s for fB and conclude that
the discontinuities across the & cuts when di-

lim =0, Ims 40.
S

At fixed t,, we have

vided by s also vanish as s-+~. We use this
dispersion relation to define fB(s,z) for unphys-
ical z and a.iso fB as a function of s and t, where
z =1+2t/(s-4). It is easy to see then that'

f (s, t)
lim — ' =0, t fixed;

S ~+oo S

f (s, z)

P(s)(2m+ 1) 2t 2t
B ' sinEo. (s) n (s) s-4 n (s) s-4

Bothf(s, t)/s and fB(s, t)/s vanish as s-~. Then regardless of how n(s) behaves as s-+~, weN

must satisfy the condition

I P(s)(2n+ 1) 2t 2t
I

N
sinmn (s) ~a (s) s-4 n (s) s-4

~

(4)

(5)

y(s) = P(s)/(s-4)
n (s)

(6)

is also a real analytic function with a normal
right-hand cut. Asymptotically y(s) is bound-
ed by a polynomial in lsd in all directions.
(Again, it actually suffices for this paper to

for fixed t, Ret&0 and Imtc0. This condition
is trivially satisfied if Ren(s) &-2 for large
positive s. The problem is however that if
Ren(s) -+~ as s-+~ then we shall see below
that it is impossible to satisfy (5) without giv-
ing up some of the properties of P(s) and n(s)
that are part of Regge-pole phenomenology.

We shall assume that, in addition to (i)-(iii),
o. (s) and P(s) have the same analyticity proper-
ties proved in potential scattering' and at least
heuristically made plausible in field theory, '
namely. '

(iv) We take n(s) to be a real analytic func-
tion of s with one cut from s = 4 to s =+~, and
assume o. (s) to be bounded by a polynomial
a,s ts 1

-~ in all directions.
Furthermore, the reduced residue y(s) de-

fined by

1
assume that Iy(s)l &c exp(lsl2-~) as Isl- ~ in
all directions. )

We must stress here that the properties im-
plied in (iv) will not hold if two trajectories
cross for some s and we will have a strange
branch point at that value of s.'

Our first step is to show that it follows from
(5) and (iv) that if Rem(s)-+~ as s-+~ it could
only do that slower than s'~ . In fa,ct we shall
prove that in all directions in the s plane the
quantity I o(s) linis l /sIl'~ 2- 0as lsl - ~. Once
we are limited to trajectories that grow slow-
er than Vs we show that such trajectories can
have Reo. (s)-+~ as s-+~ only if they also
have Ren(s) -+~ as s - -~. Such trajectories
are physically excluded since they would lead
to an infinite number of ghosts on the negative
real s axis, and they give a differential cross
section for the t-channel reaction which increas-
es for large momentum transfers. We recall
that s &0 is a physical momentum transfer for
the t-channel reaction.

Returning to (5) and using the relation between
Pz(-z) and P~(z), it turns out to be sufficient
to study the condition

lim y(s) (s-4) P 1 + s = 0.n (s) 2t
as s-4S-+ ~

If Ren (s) -+~ as s -+ ~ then Pz in (5 ) could blow up exponentially. In fact starting with the inte-

(5')
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gral r epr esentation
1

P (z) =—f [z+ (z -1) cosx] dx, Rez &0;
1 z 2 2 n

A F 0

we obtain as s-~
2t 2nv tt'

~
~(t+ =t

~
t„,-), Bet&D.

If n(s) /v's is large as s - + ~, we have

(
2t

)
4&ra(s)ft) '"

(2aft)

f llnly(s) II

( 4)lt'2, (10)

To have any chance then to satisfy (5'), we
must make the reduced residue y(s) fall off
rapidly as s- ~. However, unfortunately this
rate of fall of y(s) is already limited by the
analyticity and boundedness condition in (iv).
In fact one ean use a theorem of Boas' to show
that it follows from (iv) that

~ jectories we must conclude that

lim lns, = 0.
n (s)

Now n (s) is a real analytic function and thus

(13) holds both above and below the cut on the
physical sheet. We ean use the Phragmen-
LindelR theorem to show that in all directions
on the physical sheet of the s plane, we have

There must therefore exist at least an infinite
sequence of intervals extending out to infinity
such that

n(s) lnlsl
lcm

)
),], = 0.

Is I- ~
(14)

ly(s )1&C exp( —es ' '/lns ),n n n'

lim
n (s )ln's

n n
S 1/2

n
(12a.)

where +n is large and in the nth interval sn- ~ as n- ~. The theorem we have used here
is exactly the same one used by Martin to study
the fastest possible fall-off of form factors.

Substituting (11) and (9}in (5') we see that
(5') can only hold if

So far we have only shown that trajectories
can only tend to +~ slower than v's. Clearly
(14) should not be used for trajectories for
which Ren(s) ——~ as s —~.

We proceed to the second part of our asser-
tion. We show below that Ren(s) cannot tend
to +~ as s-+~ no matter how slowly, unless
also Ren(s)-+~ as s--~. For let us assume
that Ren(s)-+~ as s-+~. Let us furthermore
exclude the physically uninteresting case where
Ren(s) keeps on oscillating for large positive
s with amplitudes increasing to infinity. Then
there must exist a point s= s0 such that

n. (s )(lns )
2 n n

lim — =0.
S

(12b)
Ren(s) &0, s&so.

We define the function n'(s) a.s

(15)

lim
n. (s ) lns

2 n n

S
n

(12b )

These limits hold for an infinite sequence of
intervals on the real axis" and unless we are
willing to admit pathologically oscillating tra-

The latter limit on Ime can be improved by
going through the same argument a~ some fixed
z, Im~10. One gets"

n ' (s) = n (s) + c, c & 0,

where c is given by

-c = Min [Ren (s)].
4~( g~(

0

Hence by construction n'(s) is a real analytic
function and on both sides of the cut Ren'(s) & 0.
(Clearly if so& 4 we would have the same re-
sult with c = 0 and n' = n. ) Indeed one sees that
since Rem' is a harmonic function which is
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k=x+iy,

o". (k)=u(x, y)+iv(x, y), y - 0. (18)

The real part of n', u, now admits the repre-
sentation

y "+ u(x', Q)
u(x y) —— axe y & 0(x'-x)'+ y' (19)

where u(x', 0) = Reo. '(s) & 0 by construction. It
follows that u(x, y)&0 for all x andy&0. No

subtraction terms are necessary in (19) because
of the condition (14) and the integral is absolute-
ly convergent. The function u(x', 0) is an even
function of x', and for x=0, (19) becomes

u(0 y)=—' ' dx'.2y I' u(x', 0)
X' +P

(20)

If the trajectory goes to infinity no matter how
slowly there must be a point sL such that for
s&sf, Rea(s)&M withM being some large
positive number. For s & sg, Reo."& (M + c)
and hence u(O, y) has the lower bound

dx

u(0, y) &— (M +c)
"+L X' +P

2 X )
= (M + c) I 1--tan

m yj' (21)

For sufficiently large y, u(O, y) &M. This means
that any trajectory that satisfies (14) and for
which Reo.'(s) goes to +~ as s -+~, Ren(s) must
also go to +~ as s - -~. If Ren(s) -+~ as s
—- then we have a trajectory that has an in-
finite number of Regge ghosts which appear
every time Reo. (s) crosses a positive integer
value for negative real s. But there is clear-
ly a more important physical reason why such
a trajectory cannot be accepted. Negative real
s is a physical momentum transfer for the t-
channel reaction. If Rem(s)-+~ as s--~then
the differential cross section for the t-channel
reaction at large momentum transfers would
become arbitrarily large and bypass all bounds.

We summarize our results by stating that
if a trajectory exists for which Ren(s)-+~

positive on the boundary of the physical sheet
of the s plane and with growth at infinity limit-
ed as in (14), then Rea' must be positive for
all s in the physical sheet. We can write a Pois-
son representation for Rem'. For this it is
more convenient to use the variable k = —,(s-4)'~'
and map the physical sheet of the s plane onto
the upper half k plane. We have

as + -+~, and which does not go to +~ as s-
-, then at least one of the following three
statements must be false.'First, the statement
that y(s) and n (s) have cut-plane analyticity with

only a right-hand cut; second, the statement
that a(l, s) for l = -2+ ih. , y (s), and a(s) are
all bounded by exp[Is 12 ~] as ts I

—~ in all di-
rections on the physical sheet; and third, the
statement that f(s, t) and f(s, z) are bounded
for large s by at least exp(lsl2-~). We of course
use the Regge analyticity of a(l, s) as a func-
tion of l and the asymptotic conditions in / nec-
essary for the validity of the Watson-Sommer-
feld formula. But without that the whole game
1s up.

Finally, we must remark on the fact that
we took only one trajectory in (1). One can
legitimately ask if it cannot happen that we
might have, say, two trajectories o. ,(s) and

o,(s) both having Ren(s)-+~ as s-+~ but in
such a way that the contributions from the two
trajectories cancel each other as s-+~ and
(5) is satisfied for the sum of two Regge terms
but not for each alone. However, to get any
such significant cancellation [n, (s)-n, (s)] must
vanish faster than exp[-s"' ln 's] as s- ~.
This rate of decrease is not allowed by the the-
orem of Ref. 8. One way, nevertheless, re-
mains open to get cancellations, at least math-
ematically. This could occur if we have an in-
finite set of trajectories, nn(s), n=0, 1,2, ~ ~ ~,
all having Renn(s) -+~ as s-+~ and with the
residues all "cooked up" to give a super can-
cellation as s- ~. In that case (5) would be
replaced by an infinite sum of similar terms
over all the ~'s. One might speculate that
the set an(s) is nothing but the daughter tra-
jectories of Freedman and Wang. " To go fur-
ther at present would be highly speculative.

In conclusion we must state that if trajecto-
ries do actually go to positive infinity as s-+~,
then if we do not want to give up the weak bounds
we placed on a(l, s), y(s), and n(s), it could
be that trajectories cross each other for some
s. This as we mentioned earlier will lead to
new branch points in y(s) and n(s) which will
make (iv) invalid.

The author is indebted to Professor V. Singh
and Professor T. T. Wu for severs, l helpful
dls cus slons.

Note added in proof. —It would perhaps clar-
ify our paper if we mention that our results
remain essentially unchanged if we use the
residue P(s) all the way and do not use z(s).
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In the equal-mass case p(s) is also analytic
with one cut. The same theorem of Boas ran
be used for p(s) if it is bounded by exp[lsI2 ~j.
This tells us that P(s) cannot fall off faster than
exp[-e s"'ln 's]. We can choose to work at
fixed complex z instead of fixed t. In that case
one has, instead of (5'), the condition

lim IP(s)P (s)!s = 0.
S

S

This gives the sa.me result as (12a) with one
power of lns less.
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Recently it has been shown by Carruthers, '
in the framework of local field theory, that
the field operators corresponding to spinless
bosons of a self-conjugate multiplet with half-
integral isospin (SMHI) are nonlocal, in the
sense that local commutativity between fields
y and yj cannot be satisfied. We shall gener-
alize this result to particles of any spin in an
SMHI. The conclusion is that the requirement
of local commutativity and the group structure
of SU(2) do not allow us to construct spin fields
of such particles. An analogous result is proved
in the analytic S-matrix framework, where
the requirement of isospin invariance plus the
usual crossing property entail that all scatter-
ing amplitudes involving any particles of an
SMHI must vanish. Interesting physical impli-
cations of this result, and generalizations to
higher internal symmetry, are also discussed.

Throughout this paper, by a self-conjugate
multiplet we mean an irreducible multiplet

that contains the antiparticle of each particle
contained in the multiplet. Consider a self-
conjugate isomultiplet of spin j and isospin I.
I et azj(p, a) and az(p, a') be the creation and
annihilation operators of the free-particle mul-
tiplet with momentum p and spin component
o., where n denotes the Iz component. Isospin
symmetry is expressed by

U (u)a (p, a)U(u) =Q,D, (u)a, (p, a), (1)
(I)

where U(u) is the unitary operator in Hilbert
space that represents the SU(2) transformation
u, and D(I)(u) is the standard irreducible rep-
resentation matrix' with dimension (2I+1).
The adjoint of (1) is

U (u)a (p, a) U(u) =Q,D, *(u)a, (p, a). (2)
(I),

Now we construct the (2j+ 1)-component field
in the usual ways:

0, (*)=(2") 'f
2 |l Z(D„, p(p)j, (p ~')~ +&&

' p(p)|& &„,i&o (p, ~')J ~ ], (3)
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