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A superconvergence relation for ~p scattering is saturated for a range of t with an in-
finite number of mesons of all spins and nondegenerate masses.

Recently Fubini derived the SU(6) results
g =0 and g '= —,'g 'M' by saturating
two superconvergent sum rules (SCR) for ~p
scattering at l = 0.' Fubini has also shown two
ways by which an SCR could be saturated for
a range of t without using states of isospin two:
(1) The SCR can be saturated with a, finite num-
ber of particles, but some coupling constants
are forced to be imaginary; (2) the SCR can
be saturated with an infinite number of parti-
cles (a, tower), but they must be degenerate
in mass. ' We shall show that the SCR can be
saturated for a range of t by using a tower of
mesons not necessarily degenerate in mass.

As the saturating particles may have high
spin, it is convenient to use helicity amplitudes.
TM I ~~ i I(s, t) is the helicity amplitude for
the t-channel process (A+A'- B+B'). The
superscript labels isospin, and the subscripts
label helicity. TMi ~~ (s, I) is the amplitude

free of kinematical singularities as given by
Wang. Similarly S~,f, ~t, (s, t) is for the s-
channel process (A +B -A'+B')

If we allow ourselves to treat p as a stable
particle and if T~~i'(s, t)/s -0 as s —~ for the
reaction p+ p - r+ r, then the fixed-t disper-
sion relation for T+ '(s, t) can be converted
into the SCR4

f ImT '(s', t)ds' = 0.M2 +-

Equation (1) corresponds to the SCR for the
invariant amplitude A(s, t) used by Fubini.
The SCR which Fubini writes for T+ '(s, 0),
corresponding to the invariant amplitude B (s, t),
may not be correct because of the presence
of Regge cuts, ' and will not be considered in
this note.

The amplitude T+ '(s, t) can be related to
S~ +~I(s, t) by using the helicity crossing ma-
trices and the isospin crossing matrix CIII'.
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We shall now show that the SCR can be sat-
isfied for a range of t with the following satu-
ration scheme. We assume that each partial
wave is dominated by a single zero-width res-
onance. The particles with odd spin have an
isospin of zero and odd parity (~-meson tra-
jectory), and the particles with even spin have
an isospin of one and even pa.rity (4, trajecto-
ry) except for the case of spin 0 which has odd

parity (n). We can therefore drop the isospin
superscript, and since fai aJ(s) = -fai aJ(s)
for states of parity (-)J, we can drop the he-
licity subscripts as well.

The SCR can now be written as

0 = 2a M'+ g [a P '(x )(t-2M')J J s

+~ -(x )(t-4M')(t/2q ')],

with'

sq a 6(s-M ) =(2J+1)Imf (s) &0 for J&0,2 2- J

sq'aors(s-p') =Imf, ;(s) & 0,

and PJ' is the derivative of a Legendre poly-
nomial. To have the SCR true for a range of
t, the coefficient of t must be equal to 0, which
gives

(J+n)!a
0=). G (J)

J=n q (J-n)!
for n) 2, (5)

where Gn(J) = J'-(EJn/M)'+ J-n and EJ= (MJ2
+M-! ') /(2MJ).

In order to simplify the solution of (5) it is
convenient to define bJ=aJ[(EJ+M)/(E J-M)]J
and put the SCR in the form

o=g b E (J)(J-J),

where E, q' are the energy and momentum of
the p in the s channel. We have used d, (x&,)
=(-) '

( g).'
For t in a neighborhood of t = 0, a partial-wave

decomposition of S can be made:

G S, (s, t) =P (2J+1)f, (s)d, (x ). (3)
I JI J

(E -M) (J+n)!G (J)

(E +M) (J~)!(J-J)
)0,

(mz)"
(

mz)

(
n -x 2n 2

E (J)
—= [(1+x)e ] = exp(-x n)

n

where 1+x = JEJ/JE J.
The sharpness of the peaking depends on

the shape of the mass spectrum. For EJ/M
proportional to Jt, we immediately see from
(5) that P must be less than 1, in order to have
the possibility of a solution. As P approach-
es 1, we see from (7) that the minimum value
of n needed to justify dropping the tails becomes
very large. We shall therefore be unable to
find an explicit expansion for bJwhen J is small.

The inability to determine bJ when J is small
does not invalidate our procedure, for the hard-
est task is to satisfy the infinite number of
SCR given by (6) for large n. One can then
determine bJ for smaller J by explicitly sum-
ming over those values of J for which bJ had
previously calculated.

For n sufficiently large, we can expand (6)
and get

where J is the solution of G„(J)=0. If we make
the reasonable assumption that EJ is an increas-
ing function of J, then J is a unique function
of n.

The whole problem is now reduced to the
following question. Can a function bJ)0 be
found such that the partial summation in (6)
with J&J cancels the summation with J)J,
for all n ~

In order to determine bJ, we shall restrict
the summation to an interval symmetric about
J, such as 3J/4 & J& 5J/4. Our neglect of the
tails can be justified for large n, since the
function En(J) is strongly peaked at J. In fact,
our desire to have En(J) peaked at Jwas the
motivation behind our definition of bJ. Near
J=Jwe have

0= ) [b E (J)] -'(J-J)'+[b E (J)] —'", + ~ ~ ~

J=SJ/4
(6)
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The odd terms of the Taylor's expansion are not present since the summation interval is symmet-
ric around J. ln the present first-order calculation, only the first term in (8) will be kept, as the
higher terms turn out to be smaller by a factor of (1/J)2.

We now set [5JE+(J) ]JJ' '=0 for a fixed n and then express n in terms of J to get an equation for
bg independent of n'.

& '(J),
( M (E '2—E=M 1 1 E 'Z—E

b — E (J) — IE +M (—2E J(E—=M) 2 J' E- JE-'-E- )

M(E'1
J E J(E J

|'Mi
1+Ol

(E 1
(10)

The term in square brackets is dominant and
can be explicitly integrated to give

!
the appropriate formalism with which to attack
this problem.

I wish to thank H. Schnitzer for his helpful
comments on this manuscript.

To determine the higher order corrections
we must specify the function Eg in order to
integrate (9). However, only the corrections
up to O(1/J') are straightforward to calculate.
To continue the expansion of bJ beyond O(1/J'),
we must include the terms of (8) which have
been neglected, whereupon the analysis becomes
much more complicated.

We have indicated how one can construct an
explicit solution of the SCR once the mass spec-
trum of the saturating particles is given. It
is indeed interesting to note that our result
for the dominant behavior of aJ agrees with
a calculation which Fubini made for the case
of degenerate masses. '

Our approach to saturating the SCR may be
useful for Gell-Mann's program of finding a
representation of the current plus angular mo-
mentum algebra. ' Gell-Mann's program re-
quires that the particles used in the interme-
diate states must also give valid SCR when
used as external particles. That is, we must
also saturate the SCR for v + p - v +A„m+A,
-~+A» ~ ~ ~ . It will surely be difficult to sat-
urate the complete set of SCR, but the helic-
ity techniques presented in this paper may be
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