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Among the possible types of astronomical
sources of gravitational radiation are binary
stellar systems. Conceptually, these can be
two quasistellar bodies with masses of 10° to
10® M@,* a pair of neutron stars,? or a small
planetary-sized object falling into a collapsed
star.® The power level of radiation from these
sources can, in principle, be extremely high.
A number of estimates of the typical radiation
power levels and frequencies and the prospect
of detecting the radiation from such systems
have been discussed in the literature!~!?; how-
ever, these estimates were usually based on
simplified models and have tended to be con-
tradictory.

The most general description of the charac-
teristics of the gravitational radiation from
binary systems and the behavior of the systems
as they radiate can be found in the papers by
Peters and Mathews* and Peters.® These anal-
yses come from expansions of the field equa-
tions of general relativity in powers of the grav-
itational coupling constant; they accurately
describe the gravitational interaction, but as-
sume point masses and subrelativistic veloc-
ities of the components.

Detectors for gravitational radiation basic-
ally consist of an extended mass-spring sys-
tem which interacts with the differential forc-
es induced by the dynamic gravitational-force
gradient fields in the radiation. The basic prin-
ciples of gravitational radiation detectors were
first derived by Weber,® and a discussion of
these detectors and their interaction with var-
ious sources can be found in papers by Web-
er®7:!2 and others.8-1°

In this paper we briefly summarize our in-
vestigations of the characteristics of the grav-
itational radiation to be expected from bina-
ry systems, and the manner in which this ra-
diation interacts with the present gravitation-
al antenna designs. We have found that the
behavior of such systems is adequately des-
cribed by the subrelativistic equations of Pe-
ters and Mathews,%5 even for frequencies to
10 kHz and power levels to 10*® W, provided
the masses are sufficiently dense; in addition,
we have found that the theoretical maximum
power output of a binary system is independent

of the total or relative masses of the compo-
nents. Our studies also indicate that the max-
imum gravitational-radiation detection range
for binary stellar systems by mechanically
resonant antennas is independent of the type

of binary system and that for maximum detec-
tion range it is desirable to utilize a wide-band-
width detector.

The time-averaged gravitational radiation
power emitted by a binary system of low ec-
centricity with masses m and M separated by
a distance a is given by®

_32G*m°M*(m + M) _ GmM

P(a) 5¢5q° =Y 84t

(1)

The angular rate of rotation of the system is®
¥2=G(m+M)/a®. (2)

Because of the emission of energy and angu-
lar momentum in the form of gravitational ra-
diation, the orbit decays and the orbital radi-
us varies as a function of time,5

a4(t)=25668mM5(m+M)tEyt. 3)
5c

Here ¢ is taken to be the time to collapse of
the system. The frequency of the gravitation-
al radiation is at twice the rotation frequency
because of the quadrupole nature of the gravi-
tational radiation and is given as a function

of time by

l/;:GL/Z(m +M)V2

77 n.y378t8/8 . 4)

f:

The power output is also a function of time,
P(t)=GmM/8y*45* (5)

(see Fig. 1); as the time to collapse approach-
es zero, the power output increases dramatic-
ally. This process is limited, however; at
this high power output there can be only a fi-
nite number of rotations of the system before
all of the mass quadrupole angular momentum
is radiated away and the binary system collaps-
es into a single axially symmetric spinning
mass. The dashed portions of the curves in
Fig. 1 indicate the region where we are violat-
ing the assumption of subrelativistic velocities;
the structure at the top of the curves indicates
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FIG. 1. Radiated gravitational power versus time to
collapse for binary stellar systems.

that although we are still well below relativ-
istic velocities, the amplitude and frequency

of the radiation are changing so rapidly that

the definition of the “time-averaged power out-
put” is beginning to lose its meaning. The num-
ber of radians of rotation before collapse can
be obtained by integrating (2):

Zﬂ=8G1/2(m+M)1/2t5/8/5y3/8~ (6)

Combining (6) and (5), we obtain the inter-
esting relation

P)=c®/160Gy>. (7

Equation (7) is independent of the total mass
and mass ratio of the binary components and
indicates that all binary systems have the same
history of power output as a function of the num-
ber of radians to collapse.

The above equation is quite adequate for des-
cribing symmetric binary star systems of high
density, since the assumptions of subrelativ-
istic velocities (v<c¢) and linear gravitational
fields (@ <GM/c?) start to break down only in
the last 27 radians of rotation. (For a small
component orbiting a larger component, these
relativistic effects occur earlier in the collapse
process.) The theoretical maximum power
can be estimated from (7) by assuming that
min= 27 and is found to be 6x10*® W. The sys-
tems’ ability to attain such power outputs de-
pends upon the components’ ability to satisfy
the assumption of point masses, since other
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FIG. 2. Radiated gravitational power versus radia-
tion frequency for binary stellar systems.

energy loss mechanisms such as tidal defor-
mation and mass flow have been neglected.

A binary system containing neutron stars of
the type described by Wheeler?®® satisfies the
point-mass assumption quite well and forms
a contact binary system only in the last cycle
of rotation.

Although the peak power is the same for all
systems, this does not mean that the total en-
ergy emitted is the same, or that the peak can-
not occur at any frequency. The power as a
function of frequency is easily obtained from
(4) and (5) and is

_ TTIO/SmM.yfIO/S
PO = 8673+ a0y ®)

This is plotted in Fig. 2 for several different
sources. We see from this figure that as the
masses orbit about each other, the energy and
angular momentum of the system is radiated
away as a “chirp” of gravitational radiation
with a rapidly increasing power and frequen-
cy level. If we wish to detect these sources,
we should design our antennas to operate at
high frequencies where there is a significant
amount of power being emitted.

The mean flux at the earth from one of these
sources at a distance R is just

S=P/471R?. 9)

The actual flux will vary slightly about this
mean, depending upon the orientation of the
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source with respect to the direction toward
the earth.

For the discussion of the response of the
gravitational antennas to this flux we shall use
Weber’s® Eq. (8.27). This equation describes
the response of a resonant mass quadrupole
to a sustained oscillatory gravitational-radia-
tion field with a frequency at or near the an-
tenna resonant frequency. Under these condi-
tions, the power P, absorbed by the antenna
is a function of its capture cross section o,
which is a function of the mass u, length 7,
frequency f,, and mechanical quality factor
Q of the antenna:

Pa =08 = (157G pl%,Q /4c®)S. (10)

However, an antenna can absorb only that
radiation with a frequency within its bandwidth
(B =f,/Q); the binary stellar sources have such
a rapidly changing frequency in the high-pow-
er regime that they stay within the bandwidth
of the antenna for only a short time 7. The
number of cycles emitted within the bandwidth
can be calculated from (4) from the times ¢,
and t,+ 7 when f=f,—3B and f,+3B:

4/3(5 4 17)4/3

n=f,r= %%3—. (11)
Equation (11) indicates that if we operate in
the high-frequency region we will detect only
a small number of cycles of the radiation. In
order that we do not violate the assumption
implicit in the use of Weber’s cross-section
equation (i.e., that the radiation wave train
is long compared with the antenna decay time),
the minimum » we can use is 7 =@.

The important factor in antenna design is
the signal-to-noise power ratio. This is rel-
atively easy to calculate for laboratory anten-
nas since it has been found possible to elim-
inate all sources of noise from laboratory grav-
itational-radiation antennas except for the in-
ternal thermal noise.'?!* (This is not true
for the earth modes.!®) For unity signal-to-
noise power ratio we have

1=P_/kTB =Po/4TR*TB, (12)

where kT is the thermal noise energy and B
is the instantaneous bandwidth.

If we now use » =@ in (11) and rearrange,
substitute for f, in the signal-to-noise Eq. (12),
and rearrange again, we find that the range

at which we can detect a source is given by

R ._  25c2ul?

max 153672TQ% (13)

This equation indicates that the maximum range
at which we can detect a binary stellar source
does not depend upon any of the parameters

of the source, but only on those of the anten-
na. It also indicates that for maximum detec-
tion range it is better to utilize a wide-band-
width detector. This makes sense physically
if we realize that the binary system is radiat-
ing significant amounts of power only in the
last stages of the radiation process; at this
point the frequency is shifting so rapidly that
a wide-bandwidth detector is needed to capture
a significant number of cycles of the radiation.

In the derivation of (13) we assumed that the
bandwidth and frequency of the antenna are con-
stant and related by B =f,/Q. This does not
hold for a detecting system with a swept cen-
ter frequency or a chirp filter. A detector
with these properties would be more suitable
than a simple resonant mass quadrupole for
the detection of binary systems. We have al-
so assumed that the system parameters were
chosen to provide for a fully developed anten-
na response, since this is the way the present
gravitational antennas operate. Additional cal-
culations have been made assuming that it was
possible to obtain the signal-to-noise energy
ratio in a time shorter than the mechanical
response time of the antenna. In this case the
maximum detection range does not have the
1/Q dependence, but instead depends upon the
response time of the instrumentation. In the
limit of instantaneous signal-to-noise measure-
ment, a high-@ system would have the same
maximum range as that predicted by (13) for
low Q.

From (13) we can see that a large (=1 m),
massive (1 ton) resonant antenna with a @ of
3 and a frequency in the kilocycle region could
detect the gravitational radiation from a collaps-
ing neutron-star binary system at 3000 light
years.

Although there are roughly 10% observable
stellar systems within 3000 light years, of
which approximately 10° are binary systems
with periods less than a day, no neutron star
has yet been identified,!® much less a neutron-
star binary system; therefore, it is not pos-
sible at the present time to estimate the fre-
quency of occurrence of such an event, except
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to say that it is probably low.
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15A1though neutron stars have not been seen, this does
not mean they are nonexistent. Because of their small
size, they have a low optical luminosity and would be
unobservable at distances greater than a few light
years (Ref. 13).
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A superconvergence relation for mp scattering is saturated for a range of ¢ with an in-
finite number of mesons of all spins and nondegenerate masses.

Recently Fubini derived the SU(6) results
&ppr = 0 and gpm égwpn 2M? by saturating
two superconvergent sum rules (SCR) for mp
scattering at £=0.! Fubini has also shown two
ways by which an SCR could be saturated for
a range of ¢ without using states of isospin two:
(1) The SCR can be saturated with a finite num-
ber of particles, but some coupling constants
are forced to be imaginary; (2) the SCR can
be saturated with an infinite number of parti-
cles (a tower), but they must be degenerate
in mass.? We shall show that the SCR can be
saturated for a range of / by using a tower of
mesons not necessarily degenerate in mass.

As the saturating particles may have high
spin, it is convenient to use helicity amplitudes.
Tbb’ aa’ I(s, t) is the helicity amplitude for
the f-channel process (A+A’~B+B’). The
superscript labels isospin, and the subscripts
label helicity. Tpps, gqrX(s,?) is the amplitude B

free of kinematical s1ngular1t1es as given by
Wang.® Similarly S a'b’, ab (s t) is for the s-
channel process (A +B~A’+B’).

If we allow ourselves to treat p as a stable
particle and if 7 ,/'(s,?)/s ~0 as s — for the
reaction p+p -7 +7, then the fixed-¢ disper-

sion relation for T+_1(s, t) can be converted
into the SCR*

ff‘ZTzImT*‘I(SI’ t)ds’=0. (1)
Equation (1) corresponds to the SCR for the
invariant amplitude A (s, ¢{) used by Fubini.!
The SCR which Fubini writes for T, _3(s, 0),
corresponding to the invariant amplitude B(s, ?),
may not be correct because of the presence
of Regge cuts,® and will not be considered in
this note.

The amplitude 7, _%(s, t) can be related to
Sa,a’ I(s, ¢) by using the helicity crossing ma-
trlces and the isospin crossing matrix C

o )d, o )M
T"-l(s’ D=T,_ (s Ol1-x, )(t 4“) Z (=) C 15, (S i) 432( 1-x,?) 2 ) (2)
— _ 2 3 t 1/2_E_ 2_(1—)( 2)4sq2
M:Mp, /J“_Mﬂ, xs—1+t/2q » x1_|:t—4M2} q, l—xt ———]—Mz(t_‘l“z) ,
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