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The Rys E model of an antiferroelectric is solved by the transfer-matrix method. The
result is different in many respects from the analogous Ising antiferromagnet, i.e., an
infinite-order phase transition and a natural boundary in the complex T plane. It can al-
so be solved when an external electric field is included. Above the transition tempera-
ture the behavior is normal while below T there is no polarization unless the electric
field is sufficiently large.

The F model, which was originally proposed
by Rys' as an interesting statistical mechan-
ics problem, has since2 become a meaningful
model of hydrogen bonded ferroelectrics (e.g. ,
NH4H2PO4), at least in the sense that the two-
dimensional Ising model is a reasonable mod-
el for an antiferromagnet. We have succeed-
ed in solving this model by an extension of the
method used to find the residual entropy of square
ice.'

The solution has several unusual features:
(1) The free energy has a branch point at the

critical temperature (as usual), but the cut is
a natural boundary instead of a movable cut
(e.g. , lnlT-Tct).

(2) The phase transition is infinite order,
i.e. , the free energy and all its derivatives
are finite and continuous at Tz. The free en-
ergy has an asymptotic power series about T~
with a zero radius of convergence. In partic-
ular, there is no latent heat. '

(3) Unlike the Ising model, the + model can
be solved when an external electric field is
included (we wish to thank Professor J. I ebo-
witz for suggesting we treat the application
of an electric field). For T &Tc, the polariza-
tion versus ~ is the usual 8-shaped curve, sat-
urating at 8= ~. For T &Tc, however, the po-
larization is 0 for 8& bc (where Sc depends on
T). For S&hz, the polarization behaves nor-
mally. The Ising antiferromagnet does not have
this property.

A(cp, y') =+exp(-Km),

where m is now the number of types 1, 2, 3,

(2) (4) (5)

FIG. 1. The six kinds of vertex configurations allow-
ed by the "ice condition. " The associated energies for
the F model are e~=e2=e3=e4=t.'&0; e5=e6=0. From
F. Y. Wu, Phys. Rev. Letters 18, 605 (1967).

The statement of the problem is the follow-
ing: Place arrows on the bonds of a square
N&& N lattice and allow only those configurations
with precisely two arrows pointing into each
vertex. (Thus far we have the ice problem. )
Next, we assign energies to the six kinds of
vertices (Fig. 1). e, =e, =e, =e, =e&0, e, =e,
=0. If, in addition, we apply an electric field
4 in the vertical direction, there is an addition-
al energy -Sd(N'-2n), where d is the dipole
moment and 2n is the number of downward ver-
tical arrows. The partition function is

Z =+exp[-+m+Z(iV'-2n)],

where the sum is over allowed configurations;
E = Sd/kT, K = e/kT, and m is the number of
types 1, 2, 3, and 4 vertices.

Let y and p' be the configurations of two suc-
cessive rows of vertical bonds and introduce
the transfer matrix



VOLUME 18, NUMBER 24 PHYSICAL REVIEW LETTERS 12 JUNz 1967

and 4 on the single rom of vertices and where
the sum is now over allowed arrangements of
intervening horizontal arrows. If n is the num-
ber of downward vertical arrows in y then A.

is replaced by A'= exp[E(N-2n)]A(y, p') with
an electric field. Thus, Z = Tr[A ]= (largest
eigenvalue)N. As we showed previously, ' A

conserves the number n. Let y =1-2n/N and
let AN(y) be the largest eignevalue of A in any
given n subspace. Then

Z = max[A (y)] exp[N Ey].
N

(3)

x x
n

+ ~ ~ ~

n n-1 1 1
y=x&

xf{y, y )D(X, I ),

Let f(xl, ~, x„)be the amplitude in some
eigenvector for having downward vertical ar-
rows at sites xl, ~ ~ ~, xn. The eigenvalue equa-
tion is similar to the ice problem".

iaaf(x, ,",x )

imum A corresponds to the ground state of (7)
because both are positive.

The properties of the set (k] for the ground
state of (7) are well understood and we quote
the results'. (1) For each k, there is a -k.
(2) For large N, the k's are distributed between
-Q and Q (which depends on y) with a distribu-
tion function p(k). (3) It is convenient to change
variables to eik (eiP, ee)(eiP, + o'-1)-1 for
b &-I, with A=-cosy, and to e' = (e -e ~~)
x(e~ ~~-I) 1 for 4&-l, with &=-cosh'. .
The critical point is thus ~ = -1 corresponding
to a critical temperature e =2. (4) In the new
variables we introduce R(e) [such that R(n)dn
=2'(k)dk] in terms of which

N 'ln~(y)=N 'InjiN(y)+Ey= f(y)-
——J &R(n)C(n)dn+Ey-K,

1

and free energy per vertex=-kTmax f(y);
C(n) = in[(coshn-cos2p, )/(cosh+ —1)], b, )-1:

= in[(cosh2A. -cosa)/(I-cosn)], 6, & -l. (9)

where

& = exp -NKy-2K g 5(x.-y. )

i,j=l

The distribution R and the limit b are determined
by the integral equation

R(~) = g(~) fkK-(~ P)R(-P)dP, (10)
b

Again, the plane-wave Ansatz works:

f(x, ~ ~ ~, x )=Q!a(P)exp i Q k, ,x. , (5)
1 n p -j=l

and we find (for n even) the following: (1) If
P = ~ ~ ~ P, q, ~ ~ ~ and Q = ~ ~ ~ q P then a (P)
=a(Q)B(p, q) with B(p, q) =- 1+T(p)T(q)

2bT(P)]x[1+T(P)T(q)-26T(q)] ', where b,

=1-2 exp(2K) and T(P) =exp(iP); (2) for all
i=1-, ~ ~ ~, n,

exp(ik. N)= g B(k , k.);.
j4i

m(1-y)= f ~R(n)dn,
b

where

$(o.) =sing, [coshn-cosy. ] ', »-1,
inhX[coshh. -cosn] ', & & -1;

K{n)= (2w) '(sin2 p. )[coshn-cos2 p, ]

~) -1,
= (2m) '(sinh2X)[cosh2X-coso. ]

6 (-1.

(12)

(13)

%heny=0, b=~ for ~&-1 and b=m for 6&-1.
Equation (10) may then be solved by Fourier
transforms:

2K -i' -1

It will be recognized that we have constructed
the eigenvectors of the Heisenberg chain

N
H = -P S. S. + S. S. + b.S. S. , (7)

z z+1 z z+1 z z+1

R(n) = m[2gcosh(wn/2p)]
6) -1,

= {w/2X) Q sech[a(n + 2wn)/2X],

(14)

although with different eigenvalues. The max- Now, it can be shown on general grounds that,

1047



VOLUME 18, NUMBER 24 PHYSICAL REVIEW LETTERS 12 JvNE 1967

as N- ~, N 'lnAN(y) is a continuous concave,
symmetric function of y. Hence, for E = 0 the
optimum choice is y =0. The free energy is
obtained by inserting (14) and (9) into (8). The
resulting function of temperature has a cut
which is a natural boundary and we shall dis-
cuss its properties elsewhere. When the sec-
ond form of (14) and (9) is inserted into (8) the
integral can be done explicitly term by term
and we thus obtain the following expression
for ~=0 and 6&-1:

N lnZ = 2A.-K+ 2 Q (1-e )(ncoshnA. ) .(15)
n=l

For small p, or A. (i.e. , T-Tc), the free en-
ergy has an asymptotic„divergent power series
which is the same above and below Tc. In terms
of p, itis
N 'lnZ =-K+2ln[I'( —)/2I'( —,)]

2nB p,

+ 2 Q, [(-1) -IE IJ. (16)
n=1

If we differentiate (16) with respect to tL, we

find at Tc

Energy/vertex = ~ e,

Specific heat/vertex = k(ln2)2(28/45).

By virtue of the concavity mentioned above,
as F- increases p increases continuously. For
small y one does perturbation theory on (10)
and (11). b decreases with increasing y. For
4 & —1, b = ~ so that N 21n[Z (y)/Z (0)]=Ey const-
xy' and the polarization (= N'y) is proportion-
al to E. For 6& -1, b is finite (=v) and N '
&&1n[Z(y)/Z(0)]-Ey-const&&y. Hence, there
is no polarization unless E is large enough.

For y = 1, on the other hand, (10) and (11)
are simple because b=0. Thus b=n(l —y)

&& [2$(0)J '. When this is inserted into (8) one
finds N 21nZ = -K+Ey+s (1-y)+t (1-y) ln(l-y),
with s and t constants. Hence, for large &,
the polarization is

y = 1-(2/~) exp(-2E + 2K). (18)

1 "Q 1+cosk
N 'lnZ(y) =Ey-2ln2+ — dk ln, (19)

4m&-Q 1-cosk '

where Q = —,'m(l-y). The integral in (19) can
be evaluated for y=0, whence

N ' lnZ (0) = —2 ln2 + (2/m)(Catalan's constant)

= 0.236 548 2. (20)

I should like to thank Dr. A. Y. Sakakura for
a useful conversation.
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This result is in marked contrast to the anal-
ogous magnetization of the Heisenberg chain
which, in the ground state, saturates with a
finite magnetic field. The difference is a con-
sequence of the logarithmic divergence of (9)
at n =0.

Dr. F. Y. Wu has kindly informed me (private
communication) that he has evaluated the par-
tition function by the dimer method for the par-
ticular case 6 =0 (8K=V 2 or p, = 2v), but for
all y. Indeed, when 6 =0, K(o.') = 0 so that R(o. )
= $(o.') = (cosho.') ' and sinhb =tan2m(1-y). If
we insert this result into (8) and change vari-
ables to (cosho. ) '= cosk we obtain
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