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K, ---, (v '+v, ')-y, ' (2)

For S states the spatial wave function P depends

only on three variables which we take to be
r„x„and x„, the interparticle distances.
When operating on functions of these variables,
the unperturbed Hamiltonian can be written

The object of this Letter is to report the dis-
covery of analytic solutions of the Schroding-
er equation for the two-electron atom. In this
preliminary communication we confine atten-
tion to the nonrelativistic Schrodinger equation'
for a fixed nucleus of atomic number Z, and
to the simplest S states (singlets or triplets)
of the atom.

The Schrodinger equation in Z-reduced units
(energy unit =Z2 Hartree units, length unit =Z
Bohr radii) is

(Ko+ A.r~2
' —E)$ = 0,

where X = Z ' and

We assume a solution in the form of a pow-
er series in ~», starting with the arbitrary
power 0:

0= Z ~12 V„(~1,~2),
n=0

(6)

with coefficients yn which are functions of r,
and ~, to be determined. This is a somewhat
more general form than that proposed by Hyl-
leraas' or by Kinoshita. ~ In spirit it is sim-
ilar to the approach of Pluvinage. 4 By substi-
tuting (6) into Eq. (1), and using the indepen-
dence of the powers of r„iwthin the range (lr,
—x, l, r, +r,) to equate the coefficients to 0, we
find that we must take 0 =0. The remaining
equations then become

(&+ 1)P g
=

2 ~%0,

A.n+-(n+1) yn 2n n-1

K, =K, '—,+ + — +2n'~„, (3)
2 ~ 2$

Bx 'v 89 9 ~'v

~ —(K ' —E)+ --1 S' y
1 2

2n 0 n n-2 (8)

where
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for n=2, 3, ~ ~ . Hence if po(r~, x2) is known,
all the higher functions yn can be obtained it-
eratively by inverting the operators on the left-
hand sides of Eqs. (7) and (8). Further, since
S is a first-order partial differential operator,
the inversion can be carried out analytically
by a single integration.

The key problem at this point is the form
of the starting function yo. When the coupling
parameter A. goes to 0, g approaches the cor-
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responding eigenfunction (0 of the unperturbed
Hamiltonian satisfying (K,—E,)g, = 0, whose
form is known explicitly. If we limit discus-
sion to the simplest 8 states, which correlate
with the singly excited nondegenerate unper-
turbed configuration (Is)(ns), then' P =g, (x„r,).
Hence when A -0, cp, -(0 and all the other cp~

vanish. In the absence of further information
about y„ it seems likely that we can take cp,

=(, for all A (ignoring a normalization constant
depending on A). This result may be proved
by a perturbation analysis in powers of A. , which
is known to be valid if X is small enough. The
first-order treatment, ' which led to the pres-
ent work, shows that the only term independent
of x» in the first-order wavefunction is some
multiple of $0; the same is true for the high-
er order wavefunctions. Therefore, provid-
ed the perturbation series converges for the
value of A. (=Z ') of interest, ' we can take q,

To carry out the integrations, Zqs. (7) and

(8) are most naturally written in terms of co-
ordinates introduced by Gronwall' and Pock, "
x = r, '+~,' and y

= ~,' r, ', —so that S=ye/sy,
D'=8/Bx. Integrating the first two equations
with respect to y, we get

cp, =2k.J g, (x, ny)dn,

p, = ,' J [A'(I-n"') + —(E,—E)n"']g, (x, ny)dn, (10)

where n is a dummy integration variable. In
terms of the Hylleraas variables s =~, +~, and
t=x, —x„y,(s, t) for the ground state (go=w e )

takes the form

I, (I P)'" expl--(s'+ Pt')". ']dP, (11)

and cp2 is given by a similar type of expression.
The next member p, can also be reduced to
a single integral over g, and its derivatives,
and this is probably true for all the higher q
The functions p (s, t) may be expanded in pow-
ers of f,', and most terms are then found to
involve inverse powers of s. The possibility
of a formal solution of the Hylleraas type, '
provided inverse powers of s are included,
was pointed out by Kinoshita. ' There are no

signs of logarithmic terms' '2 inx or s in
the early members, in agreement with the con-
clusion of Kinoshita'3; nor of fractional pow-
ers'4 of s in the t' expansions. Further details

will be given in a subsequent paper.
The above techniques also yield analytic so-

lutions of the Schrodinger equations for the
two-electron atom in the presence of a uniform
electric field, and for the two-electron diatom-
ic molecule, hydrogen. " The applications to
arbitrary states of the two-electron atom and
to the general three-body problem are being
considered. It is interesting to note that in
the case of the lithium atom, where interpar-
ticle coordinates can also be used, the obvi-
ous generalization of Eq. (6) to a triply infinite
power series in x», ~», and ~» leads to an
inconsistency (of order A. ) if only positive pow-
ers are allowed.

The practical weakness of the power-series
solution (6) is that it almost certainly converg-
es slowly. A more powerful approach leading
to a more rapidly convergent analytic solution
is proposed in the following Letter. '
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cussions and helpful comments.
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