
Vor.UMz 17, NUMszR 18 PHYSICAI. RZVIZW I.ZTYKRS 31 OcroszR 1966

EFFECTIVE LONG-WAVELENGTH INTERACTION OF He ATOMS
DISSOLVED IN SUPERFLUID He

Gordon Baym~
Department of Physics, University of Illinois, Urbana, Illinois

(Received 5 August 1966)

He atoms, when dissolved at low concentra, -
tions in superfluid He4, have a weak residual
interaction which is attractive at small momen-
turn transfers. In a recent Letter Bardeen,
Baym, and Pines' proposed a form for this in-
teraction which yields Fermi-liquid parameters,
for the He in solution, in good quantitative
a.greement with those found experimentally by
Anderson et al.' The effective interaction, as-
sumed to be a velocity- and spin-independent
potential V(r), has a spatial Fourier transform
given approximately by

V = V cos(gk/8)

pairs of particles. The importa, nt point here
is that the interatomic potential U is the same
for all pairs of particles, He'-He', He -He',
or He -He, in the system. Thus the first two
terms in (3) are formally the Hamiltonian for
N He atoms; the last term is the kinetic-en-
ergy perturbation due to the He'-He mass dif-
ference.

In order to calculate Vo we need the ground-
state energy E of the system, and to evaluate
this we take as a trial wave function the ground-
state wave function Co(N) of N He atoms. This
gives4

for k less than twice the Fermi momentum of
a 5% solution. Explicitly /=3. 16 A and

Vo = —0.07 5m ~s'/n4,

E =ED(N) +NQq(N),

where E,(N) is the ground-state energy of N
He atoms, and

E,(N) = (p'/6m, )

(4)

(5)
where m4, s, and n4 are the mass, sound ve-
locity, and density of pure He at T=O.

The interaction (1) is surprisingly weak com-
pared with the interatomic forces in the system,
which are characterized by a. strength m~s /n4.
As was pointed out in Ref. 1, the physical rea-
son that the effective interaction is small is
the following'. In the solution the He~ displaces
the He, however, the force fields of He' atoms
and He atoms are identical and only the differ-
ences in zero-point motion and statistics of
the He atom from the He background produce
a residual interaction. 3 It is the purpose of
this note to present a, theoretical calculation,
based on this idea, of Vo, the k -0 limit of the
effective interaction.

Since m, ' =m, '+(3m4) ', where m3 is the
He' mass, the total Hamiltonian for the system
of N3 He atoms dissolved in N4 He4 atoms can
be written in the form

2 1 g p j 1 j=1
(3)

where N =Ns+N4', the sum in the first term is
over both the He~ and He particles, while the
sum in the last term is only over the He . The
sum in the middle term in (3) is over all ', N(N 1)——

is one-third of the average kinetic energy per
particle in a system of N He atoms. A large
part of the interactions of the Hes with itself
and the He~ is accounted for in Eo(N); the term
N,E, is essentially the extra zero-point ener-
gy of the He~. Equation (4) is, in fact, an up-
per bound on the exact ground-state energy of
the solution, and is exact only for N3 =0. Un-
fortunately this bounding property offers no
indication as to the validity of the functional
form of (4), linear in N, for fixed N; it is this
functional form that is crucial to the result (9)
for Vo. Physically this form derives from the
fact that the last term in (3), the kinetic-ener-
gy perturbation, is a one-body operator, a sum
of terms referring to the Hes particles individ-
ually. A determination of the corrections to
(4) requires a detailed microscopic calculation
beyond the scope of this paper.

The long-wavelength limit of the effective
He~-Hes interaction is given by the derivative
of the chemical potential p~ for-He~ particles
of one spin orientation with respect to a change
at constant pressure of the density of He~ par-
ticles of opposite spin (opposite in order to
avoid exchange effects). The reason for con-
stant pressure is that as the He atoms move
about, the He atoms in their way are displaced
in such a manner as to keep the local pressure
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constant. The fact that the trial function 40
fails to take into account the exclusion princi-
ple is not a problem; for to determine Vo at
low concentrations, we need formally to con-
sider a mixture containing at most two He par-
ticles, of opposite spin orientation. For these
two particles the exclusion principle does not
apply, and (4) is a valid form for the energy.

From (4) the chemical potentials of the Hes

and He are given by

=(BE/BN ) =E '+E +N E
3N4 0

ume of the solution in the form

v = v«(I ) + v, (a)x, (10)

1/ 04'

From the data of Kerr, '
cy =0.28, whereupon

we have

where x=NS/(N, +N4) is the concentration, we

find simply that the change 6N of the number
of particles in volume 0 on adding one He3 to
pure He' is 5N= —v, /v«, or

P4
= (&E/&N4) =E0'+N3E1',4N, 0 3 1'

Vo = —0.078m4s'/n4. (12)

where the prime denotes the derivative with
respect to N. We want then to compare p~ for
N~ =0 and pressure P with its value for N, =1
and the same pressure. To keep the pressure
the same, one must change the volume 0 of
the system slightly. Since in a large system
the chemical potentials depend only on the par-
ticle density, one can equivalently readjust the
total particle number N instead of the volume
to keep the pressure constant.

The effective change in N is determined as
follows: At constant temperature, AdP =N~d p.s
+N4dp, 4, so that in the limit of a few He par-
ticles the condition of constant P is equivalent
to constant p4. For Ns =0, p4 =ED'(No), where
No: n40 For N~ = 1 we write ¹ No + 6N. Then
the constancy of p4 implies that Eo'(No+ bN)

+E, '(No+ 5N) =ED'(No); expanding in 6N and ne-
glecting terms of relative order 1/Q, we have
then

5N = Ei '(No)/-Eo "(No) -=n. -
The change in p~ on adding one He to pure

He is then

5q, =E, (N, + Wr)+E, (N, +5N)

+Ei '(No + bN) -ED'(No) -Ei(NO)

(7)

The agreement with the value Vo = —0.075m4s2/

n4 derived empirically from fitting spin-diffu-
sion data is well within that permitted by exper-
imental uncertainty.

Lastly we estimate n theoretically. From
Zqs. (5) and (7),

s&p') .A=
6m 4S' Bn4

the right-hand side depends only on the proper-
ties of pure He . One can estimate the deriva-
tive in (13) without using detailed He4 wave func-
tions, by imagining each He atom to be a hard
sphere of diameter d moving independently in
a spherical shell of radius a- —,'d formed by the
surrounding particles; a is some average in-
terparticle spacing. The expectation value of

p in the ground state of the atom in the shell
is then (p ) =v 8 (a-d) ' Using .this simple
model de Boer' has found good agreement for
the zero-point energy of solid He by taking
a = 2'"n4 ~', appropriate to an fcc lattice, and
the empirical value d =2.0 A; this is somewhat

0
smaller than the hard-core diameter 2.6 A ap-
pearing in the 6-12 potential. Assuming d to
be independent of n4 and a -n4 ", we have

n'E, "(N,), - (8) n = (ri/8m 4sa)'(1 —d/a) (14)

neglecting terms of order 1/Q and using (7).
Now in terms of the effective interaction, 5 p3
= Vo/Q. Furthermore,

E,"(N,) = S p, 4/SN4=m4s'/n4Q;

thus from (8),

V, = —n'm4s'/n, .
The constant n can be evaluated in terms of

the molar-volume data. Writing the molar vol-

Using de Boer's numerical value for d and a
=3.8 A, an average "nearest-neighbor" distance,
as determined by neutron scattering experiments,
we find from (14) that n = 0.28; the agreement
with the experimental value is surely coinci-
dental.
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We report here the first observation of os-
cillatory magnetostriction in a semiconductor,
and show how these measurements, combined
with data on the corresponding oscillations in
the differential susceptibility, provide infor-
mation about the effect of pressure on the band
structure.

Both the longitudinal magnetostriction and
the differential susceptibility were measured
along the [110]direction in single crystals of
gallium antimonide doped with tellurium. The
magnetostriction was determined by means
of a capacitance cell, and the differential sus-
ceptibility was obtained by a field-modulation
method. ' The two sets of measurements were
carried out to a maximum field of 35 kG at tem-
peratures between 1.7 and 4.2 K.

Both the magnetostrictive strain e and the
differential susceptibility Xd were found to be
periodic functions of the reciprocal magnetic
field 1/B, with the same period, 2.5x10 ' G ',
corresponding to quantum oscillations of a Fer-
mi sphere containing 1.4x 10'8 carriers/cm'.
At a field of 35 kG at 4.2 K, the oscillation am-
plitude of e was 7x10 ' and the oscillation am-
plitude of yd was 1.7x10 ~ emu/cm3. The pe-

riod of these oscillations agrees very well with
that of the Shubnikov-de Haas oscillations ob-
served by Becker and Fan' in similarly doped
n-GaSb, which is attributed to a spherical elec-
tron surface centered on the lowest conduction-
band valley at k = (0, 0, 0}. The temperature
dependence of the magnetostriction oscillations
gives an effective mass 0 055~0 which agrees
well with Becker and Fan's value 0.052mo for
these carriers.

It is well known that the Landau quantization
of the electronic energy levels in a magnetic
field leads to quantum oscillations in a num-
ber of physical properties, including the ones
mentioned above. In particular, oscillatory
magnetostriction4 has already been observed
in bismuth, ' beryllium, ' and zinc. ' We can
obtain from the Lifshitz-Kosevich expression
for the free energy 0 of an electron gas in a
magnetic field a Gibbs free energy t", which
like 0 has a leading term periodic in c8/ehB,
8 being the extremal cross-sectional area of
the Fermi surface giving rise to the quantum
oscillations. The thermodynamic r elations,
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