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not minimized with respect to b, but rather
5 =2.V4 A was chosen to agree with the optimum
value reported in Ref. 8. Thus, this theory is
compared with other theories. A detailed com-
parison with experiment will be reported in
the future. The value of -W, is in reasonable
agreement with the experimental value" 450
+ 10 cal/mole.

It should be noted that the expectation value
of the second derivative of the potential is quite
different from the second derivative for near-
est neighbors but that second-nearest-neighbor
and further force constants are not altered much.

Although space limitations do not permit an
adequate discussion of this point, an interest-
ing aspect of the numerical procedure used here
is that the contributions to W, from terms pro-
portional to various derivatives of the potential
7 are obtained almost trivially. Contributions
to W, "' and W, "' from these terms as well
as the kinetic energy K are shown in Table II.

Table II. Contributions to (0 I Hl 0) in cal/mole from
the kinetic energy K and from terms proportional to
the nth derivative of the potential V" computed with the
ground-state eigenfunctions of the self-consistent

I c, 0) and the traditional Ik, 0) harmonic Hamiltonians.

Note that in W, "', K = V'+ 2V'+ & V + ~

contributions for W, "' show clearly that solid
neon cannot be treated adequately by the tradi-
tional harmonic approximation. Note that W, "'
as given in Table I equals K+ V'+ V' here, and

that truncation of the Hamiltonian at V' results
in an error of approximately 35 cal/mole.

One can also show from Eq. (I-54b) that (c;
k, -k~ IIIIc, 0) =0. Since these matrix elements
would normally give rise to the largest correc-
tion in perturbation theory, the eigenfunction
of II(e) appears to be a logical set with which
to begin perturbation calculations.

The author wishes to thank %. R. Belier for
useful discussions about certain features of
this work.
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Anomalies in the tunneling conductance cen-
tered at zero bias have been found in several
experiments. ' These studies were performed
on a large class of p-n junctions, as well as
on junctions composed of normal metals sep-
arated by an insulating oxide layer.

In particular, Wyatt has observed' a peak
in the conductance, G(V), centered at zero bi-
as in tunneling junctions where Ta or Nb was

separated from Al by a thin oxide layer. Wy-
att found that G(V) could be divided into a tem-
perature-independent part G,(V) and a, strong-
ly temperature-dependent part b, G(V) = G(V)
-G,(V). b, G(V)/G, (V) varied as lnle V/kTI for
e V&kT, while bG(0)/G, (0) varied with temper-
ature as lnT. The effect persisted both above
and below the superconducting transition tem-
perature, when care was taken to quench the
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superconductivity with an applied magnetic field
of 9 ko. The effect of varying the magnetic
field between 4 and 20 ko was observable only
at 1.5'K, where a lO /q broadening of EG(V)
was observed. Wyatt assumed that the zero-
bias a.nomaly in G(V) was due to a, logs. rithmic
singularity in the density of states at the Fer-
mi surface.

Anderson has suggested' that the %yatt anom-
alies may be caused by magnetic impurities,
and recent experiments appear to corroborate
his idea. Stimulated by Anderson's suggestion,
we have analyzed several microscopic mech-
anisms; one of these is closely related to the
scattering singularities discussed by Kondo. 5

We begin by remarking that nea, r zero bias
and at low temperatures, one expects localized

states to contribute to the tunneling current
by serving as a momentum reservoir for the
tunneling electrons. Such a reservoir is ob-
viously essential, if the initial and final states
of the tunneling electron have wave vectors
differing by a substantial fraction of a recip-
rocal lattice vector. This is the case for p n-
junctions of Si and Ge, and is probably the case
for the junctions studied by Wyatt, consider-
ing the nature of the Fermi surfaces of the
metals involved.

We shall assume that the localized states
(which may be associated specifically with im-
purities or with the metal-oxide interface) are
paramagnetic and are coupled to the conduction
electrons by an exchange interaction of the
following form:

H =H~+H2,

H =T Q S [(a- *b-, a- -*b-, )+(b-, *a- -b-, *a-. )]1 J -, z k+ k'+ k- k'- k'+ k+ k'- k-
k, k'

+T Q S+(a- *b-, +b-, ~a- )+T P S (a- *b-, +b-, "a- ),J k- k'+ k'- k+ J- - k+ k'- k'+ k- '
k, k' k, k'

H = +J P S [(a +a , -a +a-, ) + (b- *b-, b- +b-, )-]
2 - z k+ k'+ k- k'- k+ k'+ k- k'-

k, k'

+O' Q S+(a- *a-, +b- *b-, )+Z Q S (a- *a-, +b- *b-, ),
k, k' k- k'+ k- k'+ - k+ k'- k+ k'- '

k, k'

where Sz, S+, and S are the spin operators
of the localized states. Electrons on the left-
hand side (a) of the junction which have momen-
tum k and spin v are described by the creation
and annihilation operators ak *, ak, respec-
tively, while the operators b~i~i*, bkI&i have
similar meanings for electrons on the right-
hand side (b) of the junction.
J is an exchange coupling for electrons which

remain on the same side of the junction after
scattering off the localized spin. TJ is simi-
larly an exchange coupling, except it is defined
in terms of electrons on opposite sides of the
junction. It will, consequently, be smaller
than J by a factor, the order of the overlap
of the exponential tails of the wave functions
on opposite sides of the junction. The two terms,
H, and H„represent, respectively, the two
possible outcomes of an electron scattering
off a localized spin; either the electron scat-
ters to the other side of the junction or remains
on the same side. Thus, the interaction de-

scribed by H is confined to within a mean free
path of the junction.

H contains the interaction of conduction elec-
trons with a single localized spin. We assume
that we may neglect interference effects between
localized spin states. To obtain the total cur-
rent J~b between sides a and b we multiply

j~b, the current calculated from H, by N, the
number of localized spins.

We obtain j~b from

=e Z&lV- -,f(~-)[l-f(~-, )1ah - ko' k'o' ka k'v'
ko

k'o'

where f(ok~) is the Fermi-Dirac distribution
function and Wk~. k zi is the transition prob-
ability for an electron scattering from state
(k, o) on side a to (k', v') on side b.

To third order in the exchange coupling, W
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is given by
2& H. H .H. .

ik kj zjW. +complex conjugate + IH . I' . 5(E.-E.),i j P & E.-E
i k 2j 2

-k gi

where E and E are the energies of the initial and final states of the electron-localized-spin system.2

We shall be interested in only those terms of Wi. j which are first order'&' in TJ. We assume there
9j

is a magnetic field H present, so that the localized spins have a Zeeman energy 6 equal to g I pB IH,
where g is the g factor of the localized spin, and jL(,B, the Bohr magneton. The Zeeman energies
of the conduction electrons were found to have no effect on the current.

Typical scattering processes which contribute to AG are shown in Fig. 1. Following an analysis
similar to that of Kondo, one obtains for the processes shown in Fig. 1 the following:
Wk+M -k-', M+1

=-2T J[S(S+1)-M(M+1)][g (e- -a)+g (e- )+g (e- )+g (e-, +a)]6(e- +ev-e, -s), (6)
2 (~) (~) (~) (f )

J k+ k+ k- k-' k+ k-'

where M is the component of localized spin along the magnetic field, and S is the total spin of the
localized state. We assume the Fermi energy on the a side has been raised by an energy e V, the
applied potential. g(")(~) is defined by

(n)
(n) ~ kf(~ ) «F+Ep p (e)f(e)d

n =a9b,
-40

k ( )
k "eF Ep

where the index n specifies whether the above sum is carried out over states from the a or 5 sides.
ok~ is the energy of an electron with momentum k and spin o before the external electric field is

applied, and the Fermi energy appearing in f(ek) is the common Fermi energy of sides a and 5 when
V=0.

We have limited the sum over states to a narrow energy region of width 2EO centered at the Fer-
mi energy. This reflects the fact that only in a narrow energy is our assumption valid, that the ex-
change couplings J and TJ appearing in Eqs. (1)-(3) are constant. It is difficult to estimate E„and
it will be taken as an adjustable parameter.

When all terms which contribute to Wf. ~ are evaluated, the k-space sums in Eq. (4) performed,
9J

and the derivatives with respect to V taken, one obtains' for G(V)

where
c(v) =G,(v)+~c(v),

(M) e V+ b. e V-Al
G (V) =C 1+2S(S+1) tanh

2k T t ~2k TB B
(9a)

AG(v) =-J[p (e )+p (e )]C[hc (V)+Ac (V)+KG (V)]; (9b)

with

(M') (M)

S(S+1) S(S+1) 2k T

6-eV ~eV-A(+k T
1

B

(M2) (M) / b, -e V 6+e V )
S(S+1) 2S(S+1) ( 2k T 2kB B

leVt+k T
(1pa)

(lob)

6+eV (eV+6(+k T
1

B
(M') (M)

S(S+1) S(S+1) 2k T (1pc)
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C = T p (e )p (e )S(S+1).
4ve2 2 a b

We have assumed throughout that p" (e),
the density of states, is a slowly varying func-
tion of energy, and where it has appeared in
integrals, we have replaced it by its value at

the Fermi energy.
For H =0 (b, =0), G(V) simplifies to

G(V) =Cjl-4J[p (e )+p (e )])

&&ln[(le Vl +k T)/E ], (12)
whence

AG(0)/G(0) =-4J[p (e )+p (e )]ln(k T/E ). (13)

To order JT~', only terms with a strong tem-
perature and voltage dependence have been re-
tained. (M') and (M) refer to appropriate sta-
tistical averages of Sz' and Sz, respectively.
Terms of the form ln(kT+ ~&u ~)/Eo which appear
above are interpolative approximations to the
function E(~), where

p (e )E((d) = f dEg (f) f(e+—N) ~

n ~ (n)

ic coupling in Eq. (12) implies a dip in G(V)
instead of a peak.

For H g0, G(V) assumes the rather compli-
cated form given in Eqs. (8)-(10). For weak
magnetic fields (those for which b, /2kHT«1),
H should have no noticeable effect on G(V).
This is expected to be the case for all temper-
atures studied by Wyatt except T =1.5'K. (We
have assumed g=1 in evaluating A.) At this
temperature the essential effect of H is to broad-
en the peak. " This can be seen from Eq. (10),
where the single logarithmic peak centered
on zero bias for H =0 is split into three peaks,
two of which are displaced by 6 to either side
of zero bias. We see, therefore, that the mag-
netic field dependence of G(V) is consistent
with that found by Wyatt.

In the limit e V, kBT«6, we expect H to have
a more noticeable effect on AG(0)/Go(0). This
effect will be different, depending on whether
the main contribution to G, comes from mag-
netic or nonmagnetic scattering. In the form-
er case, Eq. (13) is replaced by

aG(0)/G(0) =-4J[p (e )+p (& )]

This is precisely the temperature and voltage
dependence found by Wyatt. Fitting his data
we obtain Eo = 10.6 meV and J(p++ p ) =0.012.
Little significance should be attached to the
small values of F, and J obtained from the da-
ta, as these parameters will be renormalized
when, e.g., the current from nonmagnetic lo-
calized states is considered. Notice also that
J is positive, which implies antiferromagnet-
ic coupling between the conduction electrons
and the localized spins, and that ferromagnet-

k4

FIG. 1. Diagram I represents a second-order scat-
tering process in which an electron in state k+ scatters
into the virtual state q—.The localized spin state, rep-
resented in the diagram by a circle, changes its z
component of spin by one unit. The virtual state q-
then scatters into the final state k—'. Such a process
may also occur in the reverse order: e.g. , q—first
scattering k—,then k+ scattering q—.The double
vertical lines represent the junction interface. Dia-
grams II-IV are similarly interpreted.

&&in[(k T+a)/E ], (14)

while in the latter, one should use instead of
Eq. (13)

aG(0)/G(0) =-4J[p (e )+p (e )][S/(S+1))

xln[(k T+~)/E ]B 0

in the high-field limit.
Experimental studies in the above regime

should serve to test the proposed exchange
model.
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The purpose of this paper is to provide a physical model for the interactions proposed
by Appelbaum which he used to explain Fermi-surface anomalies in tunneling. We also
evaluate these interactions and show why the anomalous conductance need not be small
compared to the direct tunneling.

Appelbaum' has recently explained some of
the anomalous variations of the tunneling con-
ductance which are frequently observed near
zero-bias voltage in terms of exchange inter-
actions between tunneling electrons and mag-
netic states in, or near, the insulating layer
of the tunnel junction. These anomalous vari-
ations are observed both in tunneling between
degenerate semiconductors'~' and between met-
als, 4~' and in the latter case depend to some
extent on the metal, on the insulator, and on
junction preparation. Characteristically, in
the simplest cases, a peak in conductance,
logarithmic in some homogeneous function of
V and T, is observed. '

The purpose of this Letter is to provide a
physical model for the interactions postulated
by Appelbaum, which also evaluates them and
demonstrates why the anomalous conductance
need not be small compared to the direct tun-
neling.

Appelbaum's explanation assumed an exchange
type of interaction between a localized spin

S, somewhere near the tunneling layer, and
electrons in the two degenerate Fermi gases
described by operators ago*, aiba for metal 1,
b&z*, biz for metal 2:

JC. = Q (S (v), [J(a +a, , )
QQ ig(yl

+T (a *bk, , +b„~a„, , )]).

(Appelbaum's Hamiltonian is symmetric in
the two metals, but this is neither necessary
nor, as we shall see, likely). T is the Pauli
spin operator, and J and Tg are exchange and
exchange-tunneling interactions between the
local moment and the metals.

The anomalous term appears to order JTg
and is, in the simplest case, of the form

AG(p) =Jp (p)[(16''/h)T 'S(S+1)p (0)p (0)]

&&ln[E /(leV I+kT)].
0

p+ and py are the metallic densities of states;

S5


