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The simultaneous excitation of electron-plasma and ion-acoustic oscillations by means
of a single electromagnetic wave at w = w, has been observed experimentally and ana-

lyzed theoretically, with consistent results.

In the linear approximation, an electron-ion
plasma supports two distinct, independent modes
of oscillation: the electron-plasma and the
ion-acoustic waves. We have observed a strong
nonlinear process in which these two basic
collective modes are coupled and simultaneous-
ly excited by means of a single high-frequen-
cy electromagnetic field. This process makes
use of the nonlinear properties of large-am-
plitude, resonant plasma oscillations which
can be generated in a bounded plasma,' and
appears to be considerably more efficient than
theoretically proposed schemes for paramet-
ric excitation of plasma oscillations using trans-
verse electromagnetic fields.?

In the experiment, a microwave signal of
frequency w, was transversely beamed at a
cylindrical plasma column whose average elec-
tron-plasma frequency Wp =wp. Under these
resonant conditions, strong coupling between
the transverse microwave field and longitudi-
nal electron-plasma oscillations takes place.®
Figure 1 shows the spectrum of radiation re-
flected and emitted by the plasma for various
levels of incident microwave power at resonance.
For low values of incident power, the plasma re-
flected radiation at w, only, as shown in Fig. 1(a).
This illustrates the familiar condition in which
a single electron-plasma oscillation mode at
w, is excited. When the incident power at w,
was increased above a very sharp threshold
level, the plasma was found to emit coherent
radiation at two additional frequencies w,—§
and w, +§, equally spaced about w,, as shown
in Fig. 1(b). The frequency difference Q fits
very closely just above threshold to the value
of the ion-acoustic oscillation with a wavelength
given by the inside diameter of the tube.* Emis-
sion from the plasma at these high frequencies
(Zw,) corresponds to the excitation of electron-

plasma modes: This was independently veri-
fied by means of the incoherent-microwave-
scattering technique.® High-frequency micro-
waves at wjp > wp were beamed at the plasma,
and the scattered spectrum was analyzed. Fig-
ure 1(c) shows the scattered spectrum in the
vicinity of w;,-wq. For incident microwave
power at w, above the threshold, this exhibited
components at wj,—wq and wj,-wq £ 2, show-
ing that three electron-plasma oscillations were
simultaneously excited by the microwaves at w,.

Above the threshold, the scattered spectrum
also exhibited components at w;, + ©, showing
that an ion-acoustic oscillation at £ was excit-
ed. This was borne out by independent low~
frequency probe measurements. A negative-
ly biased probe was introduced into the plas-
ma near the region of maximum microwave
field, so that it drew a current proportional
to the ion density near its tip. The fluctuations
in probe current were displayed on a low-fre-
quency spectrum analyzer, as shown in Figs.
1(d) and 1(e). Above the threshold, a large
ion-density component fluctuating at £ appeared,
and its amplitude increased with incident mi-
crowave power at w,.

For incident microwave power at and above
the threshold (field strengths up to 15 V/cm),
the spectrum described above did not occur
when the microwave and plasma frequencies
were not adjusted for resonance, or when the
plasma column axis was parallel to the elec-
tric field vector, i.e., for low ratios of longi-
tudinal to transverse field in the plasma.

We regard the three electron-plasma oscil-
lations at w, and wy,+Q and the ion-acoustic
oscillation at  as the components of the spec-
trum of a four-frequency parametric amplifier
driven to oscillate by the application of a lon-
gitudinal “pump” field at w, in excess of the
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FIG. 1. Spectral components of parametrically ex-
cited plasma oscillations. Ordinate: amplitude. Ab-
scissa: frequency. Curves (a) and (b) have emission
near w,=4.4 Ge/sec, dispersion 40 ke/cm, resolution
1 Kc/sec. (a) Below threshold, incident power 2 W
(field strength ~10 V/cm). (b) Above threshold, inci-
dent power 3 W (field strength ~12 V/cm). (c) Incoher-
ent scattering near wj,—wq, with w;, =11.4 Ge/sec.
Curves (d) and (e) have ion-current-fluctuation spec-
trum near @ =120 ke/sec, dispersion 10 ke¢/cm, reso-
lution 10 cps. (d) Below threshold, incident power 2 W.
(e) Above threshold, incident power 3 W. (f) Emission
near w,=4.4 Ge/sec from multiple ion-acoustic oscil-
lations excited at maximum power (4 W into cavity
with @ =700). All data for 0.8-cm-i.d. mercury dc dis-
charge at 1 mTorr, wo=w, =4.4 Ge/sec, =120 ke/
sec.

threshold level.® The sharp onset character-
istic of parametric excitation can be checked
for consistency with the interpretation. Extend-
ing Silin’s analysis?® of parametric excitation

by transverse electric fields through the inclu-
sion of a temperature term, we found the ini-
tial growth rate for parametrically excited elec-
tron-plasma and ion-acoustic oscillations to

be s =Awpewpi/(w9)”2, where A = (eE /mw,?),

e and m are the electron charge and mass, E
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is the amplitude of the applied electric field

at the frequency w,=w + 2, and w and  are

the eigenvalues of the electron-plasma and ion-
acoustic modes, respectively. Introducing typ-
ical observed frequencies and local electric
field strength at threshold, s is found to be
about two orders of magnitude less than known
damping rates.” In order to estimate the effect
of the large-amplitude density fluctuations as-
sociated with longitudinal applied fields, we
considered an alternate model. In the hydro-
dynamic description the inertial term V.vv
was neglected, but typical driven density-fluc-
tuation terms which are first order in the applied
field were retained. Using the same perturba-
tion technique, the initial growth rate for small
A (<1073) now turned out to be s’ =Awpe®/ (WQ)H2,
s’/s=(M/m)*?, a large number. Introducing
the value of an observed threshold, for instance
E=5V/cm at 4.4 Ge/sec in a 0.5-Torr, 0.2-
cm-i.d. helium discharge, the growth rate s’
=10° sec™, large enough to overcome damp-
ing of the ion-acoustic oscillations.’

Our simplified model, therefore, seems to
confirm the experimental observations, that
longitudinal field coupling is more efficient
than transverse field excitation in the paramet-
ric generation of plasma oscillations.

The threshold value of the ion-acoustic mode
frequency should be close to the value given
by the linear dispersion relation. Table I shows
that the agreement is very good over a range
of almost two orders of magnitude obtained
by varying both wavelength and ion mass. This
also suggests that the spectrum of parametri-
cally induced oscillations may be used as a
simultaneous diagnostic of the electron density
and temperature in bounded plasmas.

At field strengths greatly in excess of the
threshold, e.g., with a standing-wave field of
about 200 V/cm, the plasma was also found

Table I. Calculated and observed ion-acoustic oscil-
lation frequency at threshold for parametric excitation.

Ion mass Tube i.d. Calculated Observed
(a.u.) (cm) frequency frequency
200 0.6 122 ke/sec 120 ke/sec
(Hg)
200 0.15 490 ke/sec 500 ke/sec
(Hg)
4 0.2 3.9 Mc/sec 3.6 Mc/sec
(He)
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to emit over a wide spectrum about w,, with
sharp peaks in the vicinity of the multiples of

€ and of the ion-plasma frequency. The latter
may represent instabilities, in which the screen-
ing effect of the electrons on the ions is lost.

In summary, we have described a strong non-
linear coupling between electron-plasma and
ion-acoustic oscillations. The properties of
the process are in qualitative agreement with
theory.
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FIG. 1. Spectral components of parametrically ex-
cited plasma oscillations. Ordinate: amplitude. Ab-
scissa: frequency. Curves (a) and (b) have emission
near w,=4.4 Ge/sec, dispersion 40 ke/cm, resolution
1 Kc/sec. (a) Below threshold, incident power 2 W
(field strength ~10 V/em). (b) Above threshold, inci-
dent power 3 W (field strength ~12 V/em). (¢) Incoher-
ent scattering near w;,—wg, with wj, =11.4 Ge/sec.
Curves (d) and (e) have ion-current-fluctuation spec-
trum near Q =120 ke/sec, dispersion 10 ke/cm, reso-
lution 10 cps. (d) Below threshold, incident power 2 W.
(e) Above threshold, incident power 3 W. (f) Emission
near w;=4.4 Ge/sec from multiple ion-acoustic oscil-
lations excited at maximum power (4 W into cavity
with @ =700). All data for 0.8-em-i.d. mercury dc dis-
charge at 1 mTorr, wo=w, =4.4 Ge/sec, =120 ke/
sec.



