for a helpful discussion.
Note added in proof. - After this paper was completed, a recent paper by Ademollo and Gatto ${ }^{8}$ came to our attention which derives essentially the same result for the η branching ratio by a somewhat different procedure. The method used here is more general and will yield different results for most other applications.

[^0]${ }^{2}$ S. Weinberg, Phys. Rev. Letters 17, 336 (1966).
${ }^{3}$ The axial-vector amplitude in $K_{l 4}$ leads to both S and P-wave pions; however, the decay rate is dominated by the S-wave part [cf. Ref. 2 and C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153 (1966)].
${ }^{4}$ L. M. Brown and P. Singer, Phys. Rev. Letters 8, 460 (1962).
${ }^{5}$ Recently, it has been shown that a dispersion treatment of photopion production gives agreement with lowenergy experiments if the $\pi \rho \gamma$ vertex (and a fortiori $\eta \rho \gamma$) is set equal to zero (A. Donnachie and G. Shaw, to be published).
${ }^{6}$ N. Cabibbo and A. Maksymowicz, Phys. Rev. 137, B438 (1965).
${ }^{7}$ It is possible to relate $\eta \rightarrow \pi+\pi+\gamma$ and the vector amplitude in $K_{l 4}$, using $\operatorname{SU}(3)$ invariance; considering the pseudoscalar octet to be degenerate (i.e., equal mass for π and η). V. I. Zakharov, Yadern. Fiz. 1, 1053 (1965), obtains a 10% "up-down" asymmetry.
${ }^{8}$ N. Ademollo and R. Gatto, Nuovo Cimento 44, 282 (1966).

MASS SPECTRUM OF BOSONS FROM 500 TO 2500 MeV IN THE REACTION $\pi^{-}+p \rightarrow p+X^{-}$OBSERVED BY̌ A MISSING-MASS SPECTROMETER

M. N. Focacci, W. Kienzle, B. Levrat,* B. C. Maglić, and M. Martin*
CERN, Geneva, Switzerland
(Received 14 September 1966)

We summarize here the combined data on mass spectrum of charged bosons X^{-}(isospin 1 or 2) produced in the reaction $\pi^{-}+p \rightarrow p+X^{-}$ at incident laboratory pion momenta $p_{1}=3,3.5$, $4.5,5,6,7$, and $12 \mathrm{GeV} / c$, observed by the missing-mass spectrometer. The original data, containing a total of 180000 processed events, have been published. ${ }^{1-7}$ In each event, the instrument measures (1) the mass of X^{-}, M, with a full-width resolution $\Gamma_{\text {res }}=26 \pm 6$ MeV , nearly independent of M (by adjustment of p_{1} and $\left.t\right)$; (2) the number of charged decay products of X^{-}which can decay into 1,3 , or 5 charged particles plus possible neutral(s) (denoted by $1 \mathrm{c}, 3 \mathrm{c}$, and 5 c); (3) the four-momentum transfer square, $-t$, in each event with an accuracy of $\Delta t= \pm 0.006,0.025$, and 0.07 , for $t=0.1,0.25$, and $0.5(\mathrm{GeV} / c)^{2}$, respectively. We also measure the differential cross section, $d \sigma / d t$, in a band of t whose width can be adjusted between 0.05 and $0.15(\mathrm{Gev} / c)^{2}$. The total cross section obtained from our $d \sigma /$ $d t$ data by integration over t is strongly modeldependent and therefore of limited usefulness.

In order to optimize the mass resolution, each of the observed peaks has, in principle, been investigated in different conditions of background, incident momentum, and momentum transfer; further, in order to avoid possible instrumental biases, each run has been repeated at several different positions of the spectrometer angle and, when possible, at more than one incident pion momentum. The full efficiency of the system extends over a mass bite of $500-1000 \mathrm{MeV}$, depending on p_{1}. Thus, to present the full spectrum in the mass range 1900 MeV wide with a smooth background line in one diagram, we have taken only the events above the background and so compiled the data from all the runs. For the authors and the detailed discussion of each peak, we refer the reader to the publications listed in the last column of Table I.
The compiled spectrum is given in Fig. 1, and the most important information on each object seen in Fig. 1 is given in Table I. In addition, we would like to make the following remarks on the δ, the A_{1} region, the A_{2}, and
Table I. Data on unstable bosons, \boldsymbol{x}^{-}, produced in reaction $\pi^{-}+p \rightarrow p+x^{-}$, obtained by missing-mass spectrometer. $p_{1} \equiv$ lab. incident pion momentum; $|t| \equiv s q u a r e$ of the momentum transfer to recoil

Name	Mass M (MeV)	$\begin{array}{\|c} \text { Exp. } \\ \text { resolution } \\ \Gamma_{\text {exp. }} \\ (\mathrm{MeV}) \end{array}$	$\underset{\text { Physical }}{\text { Pld }}$ whdth I (MeV)	$\begin{gathered} p_{1} \\ (\pm 1 \%) \end{gathered}$	Statistical Significance (Standard deviations)		back- $\underset{\substack{\text { Signal/ } \\ \text { back- }}}{ }$ ground ${ }^{2}$	t limits $(\mathrm{GeV} / \mathrm{c})^{2}$	$\begin{aligned} & \begin{array}{l} \mathrm{d} \sigma / \mathrm{dt} \text { in } \\ \text { the } t \operatorname{limits} \end{array} \\ & \mu \mathrm{~b} /(\mathrm{GeV} / \mathrm{c})^{2} \end{aligned}$	Decay mode	Reference
p^{-}	768 ± 5	28 ± 5	127 ± 5	3.0 3.5 4.5 5.0		$15,600 \pm 170$	1.6: 1	$0.10-0.14$ $0.14-0.17$ 0.17 0.1722 $0.22-0.26$	$\begin{aligned} & 770 \pm 150^{b} \\ & 770 \pm 170 \\ & 580 \pm 100 \\ & 370 \pm 110 \end{aligned}$	1c > 97.4\%	1,2
8^{-}	962.5 ± 5	24 ± 4	≤ 5	3.0 3.5 4.5 5.0	5.0	26 ? ± 52	1:5	$0.11<\mathrm{t}$ < 0.21	$8.9 \pm 3^{\text {c }}$	2 $\frac{10}{3 c}=1.3 \pm 0.9$	3,8
Λ_{2}^{-}	1286 ± 8	36 ± 4	98 ± 5	6.0	17	1282 ± 63	1:1.5	$0.31<t<0.39$	400 ± 120	$\frac{10}{3 c}=1.05 \pm 0.1$	4
				7.0							7
$\begin{aligned} & \Lambda_{2}^{\prime} \\ & \Lambda_{2}^{*} \end{aligned}$	$\begin{aligned} & 1260 \pm 10 \\ & 1312 \pm 10 \end{aligned}$			$\left.\begin{array}{l}6.0 \\ 7.0\end{array}\right\}$	$\begin{aligned} & 1 \text { peak and } \\ & \text { 2 peaks equally } \\ & \text { probablet } \\ & \text { p }=5 \%-10 \% \end{aligned}$	$\frac{A_{2}^{\prime}}{A_{2}^{*}} \simeq 1: 1$	$\begin{aligned} & 1: 6 \\ & 1: 6 \end{aligned}$			$\frac{10}{3 c} \approx 1$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$
R^{-}	1691 ± 15	31 ± 3	116 ± 3	$\left.\begin{array}{c}7.0 \\ 12.0\end{array}\right\}$		973 ± 84	1: 6	$0.23<t<0.28$	125 ± 30		5,7
R_{1}	1632 ± 15	34 ± 3	≤ 21		6.7	369 ± 55	1:4.7		35 ± 12	$\begin{aligned} 10 & =0.7 \pm \pm 0.13 \\ 3 c & =0.59 \pm 0.21 \\ >3 c & =0.04 \pm 0.04 \end{aligned}$	7
R_{2}	1700 ± 15	30 ± 3	≤ 30	$\left.\begin{array}{c}7.0 \\ 12.0\end{array}\right\}$	6.1	267 ± 44	1 : 3.3		42 ± 14	$\begin{array}{r} 1 \mathrm{c}=0.42 \pm 0.11 \\ 3 \mathrm{c}=0.56 \pm 0.14 \\ >3 \mathrm{c}=0.01 \pm 0.01 \end{array}$	7
R_{3}	1748 ± 15	28 ± 3	≤ 38		7.3	337 ± 46	1:3.5		47 ± 16	$\begin{array}{r} 1 c=0.14 \pm 0.08 \\ 3 c=0.80 \pm 0.18 \\ >3 c=0.05 \pm 0 \pm 05 \end{array}$	7
s^{-}	1929 ± 14	22 ± 2	≤ 35	12.0	5.5	226 ± 41	1:7	$0.22<t<0.36$	35 ± 12	$\begin{aligned} & 1 c=0.06 \pm 0.15 \\ &=0.06 \\ & 3 c=0.92+0.08 \\ &>3 c=0.02 \pm 0.20 \\ &-0.02 \\ & \hline 0.02 \end{aligned}$	6
T^{-}	2195 ± 15	39 ± 4	≤ 13	12.0	5.1	209 ± 41	1:7	$0.22<t<0.36$	29 ± 10	$\begin{aligned} & 1 c=0.04+0.11 \\ &-0.04 \\ & 3 c=0.94 \pm 0.06 \\ &>3 c=0.02+0.19 \\ &>0.0 .02 \end{aligned}$	6
v^{-}	2382 ± 24	62 ± 6	≤ 30	12.0	5.9	252 ± 43	1:6	$0.28<\mathrm{t}$ < 0.36	42 ± 14	$\begin{aligned} 1 c & =0.30 \pm 0.10 \\ 3 c & =0.45 \pm 0.15 \\ >3 c & =0.25 \pm 0.10 \end{aligned}$	6

FIG. 1. Compiled spectrum of bosons X^{-}of isospin $I=1$ or 2 , produced in the reaction $\pi^{-}+p \rightarrow p+X^{-}$, observed by the CERN missing-mass spectrometer. The incident-pion momenta, $P_{\text {incident }}$, are indicated below each peak. The area under each peak corresponds to its differential cross section $d \sigma / d t$, normalized to $|\bar{t}|=0.2(\mathrm{GeV} / c)^{2} \mathrm{us}-$ ing the observed (Ref. 1; G. Chikovani, L. Dubal, M. N. Focacci, W. Kienzle, C. Lechanoine, B. Levrat, B. Maglić, M. Martin, C. Nef, and P. Schübelin, to be published) $d \sigma / d t$ vs $|t|$ dependence, $\exp (8 t)$. The normalized $d \sigma /$ $d t$ values are $500 \pm 100,7.4 \pm 2.5,800 \pm 160,94 \pm 32,50 \pm 17,41 \pm 14$, and $77 \pm 24 \mu \mathrm{~b} /(\mathrm{GeV} / c)^{2}$, for the rho, delta, A_{2}, R, S, T, and U, respectively. For convenience of presentation, the spectrum has been scaled up by a factor of 2 in the region of $\delta(900-1000 \mathrm{MeV})$ and $R(1530-1810 \mathrm{MeV})$ and scaled down in the region of $A_{2}(1150-1530 \mathrm{MeV})$ by a factor of 2 . The decay multiplicities are 1 charged particle (+ possible neutrals) for $0.5<M<0.9 \mathrm{GeV}, 3$ charged particles (+ possible neutrals) for $1.67<M<2.30 \mathrm{GeV}$, and 1 charged plus 3 charged (+ possible neutrals) for all other masses. For branching ratios see Table I. Bin size: 5 MeV for $0.90<M<1.00 \mathrm{GeV}, 7.5 \mathrm{MeV}$ for $1.00<M<1.42 \mathrm{GeV}, 10 \mathrm{MeV}$ for the rest of the spectrum. The dashed lines at the bottom indicate two mass bands (1000-1150 and $1450-1570 \mathrm{MeV}$) which have not been covered by the full efficiency of the spectrometer in any run. The errors are statistical. Note: in the row labeled "EVENTS IN PEAK," 1270 should read 974.
the T.
$\delta(962.5)$. - (a) Isospin has been determined recently as $I=1$ by Oostens et al. ${ }^{8}$ who exclude $I=2$ for δ^{+}since they observe it in the reaction $p+p \rightarrow d+\delta^{+}$. Their δ^{+}has $M=966 \pm 8 \mathrm{MeV}$ and physical width $\Gamma \leqslant 5 \mathrm{MeV}$. (b) The value for $\sigma_{\text {tot }}$ given by us 3 is probably incorrect since it was obtained by comparing the number of δ^{-}'s with the number of ρ^{-}events. We have now computed the value of $d \sigma / d t$ (Table I). Oostens et al. give an upper limit to the $\sigma_{\text {tot }}$ of the order of $1 \mu \mathrm{~b}$ by comparison of δ^{+}production with π^{+}production in $p+p \rightarrow d+\delta^{+}$. A_{1} region. - We had no run in the mass region of the $A_{1}(1075)$ with the spectrometer operating with 100% efficiency. ${ }^{4}$ In addition, this
part of our experiment was not sensitive to momentum transfers $|t|<0.23$, where A_{1} was reported to be dominantly produced. ${ }^{9}$ Also the mass region around $M-1500 \mathrm{MeV}$ was not investigated in the full-efficiency region in any of our runs.
$A_{2}(1286)$. - We have recently recomputed the value of $d \sigma / d t$ for the A_{2} production at $6 \mathrm{GeV} /$ c (Table I), which was underestimated earlier. ${ }^{4}$
$T(2195)$.- Recently an enhancement has been reported at $2207 \pm 13 \mathrm{MeV}$ in the $\pi^{ \pm} \pi^{\mp} \pi^{0}$ effective mass (Alles-Borelli et al., ${ }^{10} \bar{p} p$ annihilation at $5.7 \mathrm{GeV} / c)$. The authors suggest that their peak may be identical with our T (2195). Their data show no effect in $\pi^{ \pm} \pi^{ \pm} \pi^{0}$ which would

FIG. 2. Number of each major peak in sequence of increasing mass plotted versus mass square, $M_{X}{ }^{2}$.
resolve the ambiguity between $I(T)=1$ or 2 , inherent to our production reaction, in favor of $I(T)=1$. This conclusion is also supported by our low 1c:3c ratio in the decay multiplicity of T (see Table I), since $1 \mathrm{c}: 3 \mathrm{c}=1$ would be expected if $I(T)=2$.
A regularity between the masses of the major peaks. -If we plot the major peaks $[d \sigma / d t$ $\left.\geqslant 20 \mu \mathrm{~b} /(\mathrm{GeV} / c)^{2}\right]$ from our spectrum (Fig. 1) in order of their mass on a linear scale versus mass square $M_{X}{ }^{2}$, the points lie on a straight line with the slope of $1.05 \mathrm{GeV}^{2}$ and the intersection at zero mass at 0.45 units of the linear scale (Fig. 2). ${ }^{11}$ For the R boson, the weighted average of masses R_{1}, R_{2}, and R_{3} is taken. We note that the peak numbers of ρ and of A_{2} in Fig. 2 are equal to their established spins, 1 and 2 , respectively.
The authors are indebted to G. Chikovani, L. Dubal, C. Nef, and P. Schübelin for their aid, and to Professor P. Preiswerk and Pro-
fessor W. Paul for their continuous interest and support.
*Present address: University of Geneva, Geneva,
Switzerland.
${ }^{1}$ H. R. Blieden, D. Freytag, J. Geibel, A. R. F. Hassan, W. Kienzle, F. Lefébvres, B. Levrat, B. C. Maglić, J. Séguinot, and A. J. Smith, Nuovo Cimento 43, 71 (1966); Phys. Letters 19, 444 (1965).
${ }^{2}$ H. R. Blieden, M. N. Focacci, L. Dubal, W. Kienzle, F. Lefébvres, B. Levrat, and B. C. Maglić, Phys. Letters 19, 708 (1966).
${ }^{3}$ W. Kienzle, B. C. Maglić, B. Levrat, F. Lefébvres, D. Freytag, and H. R. Blieden, Phys. Letters 19, 438 (1965).
${ }^{4}$ F. Lefébvres, B. Levrat, H. R. Blieden, L. Dubal, M. N. Focacci, D. Freytag, J. Geibel, W. Kienzle, and B. C. Maglić, Phys. Letters 19, 434 (1965); see particularly p. 437.
${ }^{5}$ J. Séguinot, M. Martin, B. C. Maglić, B. Levrat, F. Lefébvres, W. Kienzle, M. N. Focacci, L. Dubal, G. Chikovani, C. Bricman, H. R. Blieden, and P. Bareyre, Phys. Letters 19, 712 (1966).
${ }^{6}$ G. Chikovani, L. Dubal, M. N. Focacci, W. Kienzle, B. Levrat, B. C. Maglić, M. Martin, C. Nef, P. Schübelin, and J. Séquinot, Phys. Letters 22, 233 (1966).
${ }^{7}$ B. Levrat, C. A. Tolstrup, P. Schübelin, C. Nef, M. Martin, B. C. Maglić, W. Kienzle, M. N. Focacci, L. Dubal, and G. Chikovani, Phys. Letters 22, 714 (1966).
${ }^{8}$ J. Oostens, P. Chavanon, M. Crozon, and J. Tocqueville, reported at the Conference of the French Physical Society, Dijon, June, 1966 (unpublished). $\sigma_{\mathrm{tot}} \cong 1 \mu \mathrm{~b}$ for $p+p \rightarrow d+\delta$ at $3 \mathrm{GeV} / c$.
${ }^{9}$ Aachen-Berlin-CERN Collaboration, Phys. Letters 19, 608 (1965).
${ }^{10}$ V. Alles-Borelli, B. French, A. Frisk, L. Michejda, and E. Paul, to be published.
${ }^{11}$ By comparison, the baryon slope in the spin-versusM^{2} plot is $1.04 \mathrm{GeV}^{2}$, taking the lowest ten, well-established baryons.

[^0]: *Work supported in part by the U. S. Atomic Energy Commission.
 \dagger On leave from the Tata Institute of Fundamental Research, Bombay, India.
 ${ }^{1}$ I.e., the \boldsymbol{A} parity of J. B. Bronzan and F. E. Low, Phys. Rev. Letters 12, 522 (1964), which is identical with the R^{\prime} invariance for mesons considered earlier by S. Okubo and R. E. Marshak, Nuovo Cimento 28, 56 (1963).

