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Mathematical techniques have been described'"
by which one can perform an exact calculation
in coordinate space of the matrix elements of
a crystal Hamiltonian

between the eigenfunctions la;n) of a, harmon-
ic Hamiltonian'

H" '(a) = -', ) 'PP+ —,'a'qeq

appropriate to a crystal of the same symme-
try. Here a is a parameter which is essential-
ly a scale factor for the generation of a set of
harmonic Hamiltonians whose eigenfunctions
and eigerivalues are simply related, X' =h'/
(mv'e), and the Mie-Lennard-Zones potential
V(r) =4@[(v/r)"-(v/r)'] has been used, with
g and e as units of distance and energy, respec-
tively. We will also use

A similar notation is used for other vectors
and matrices. The coordinate of the ith par-
ticle is given by r2 and its equilibrium position
byR, dq. = -R .

It was found that W(a) =(a; OIH la; 0) and E~+(a)
—= (a;0 iH la; k~)-W(a) were readily obtained,
where la; 0) is the ground-state eigenfunction
of H"'(a), and la;ko) is the state with one pho-
non of wave vector k, belonging to the nth branch,
excited. Thus, a variational calculation can
be performed to determine the optimum value

ao of a and the ground-state energy Wo(ao) of
the crystal. The Ey~ =-Ey~(a0) then give the
phonon spectrum to first order.

In this Letter it will be shown that a logical
extension of the calculation described above
leads to the construction of a "self-consistent
harmonic Hamiltonian" for a crystal, which
we shall define as that Hamiltonian

v=-,' Q v(r )..

iwj in which

H =-,'i PP+-', qc q
(c), 2-, (c)

A notation is used in which q is a supervector
whose components are the vectors q, and the
Ca.rtesian components of qi are denoted by q;~.

(c)cP
2j

,
c, 0 . (4)
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This intuitively appealing equation is similar to a result obtained by Nosanow and Werthamer except,
here, the additional feature of self-consistency is present.

By differentiating Eq. (I-64) with respect to

() P
(( ())I/2) P

U U
one can show, after some matrix manipulation, that the relationship given by Eq. (4) is sufficient to
cause the right-hand side of

BW /aG. , =-,'5. . —(c, olq. q. Vlc, o)+ ,'(T&u -T) . (c. , OIVlc, o)(c)op, np o. p, - -1 np

U 'U ' i j U

to vanish, where T is the matrix which diago-
nalizes' C (c). Thus,

|c, 0) ~exp( —~qG q}
, - (c)

is that particular correlated Gaussian wave
function which minimizes the expectation value
of the true crystal Hamiltonian, and, in this
sense, is the optimum harmonic wave function
with which one can approximate the ground-
state eigenfunction of H. In addition, if 5 is
the nearest-neighbor distance, one can show
that BW,/sb =0 is equivalent to

(c, 0 i (s V/8 I ) i c, O) = O.

(c)o' E (c)o.
(8)

The construction Uf H(c) is a simple iterative
procedure in which a matrix 4 is used in Eq. (2)

The approximation of a crystal Hamiltonian

by a model harmonic Hamiltonian was first sug-
gested by Born, ' and subsequent work along
these lines was performed by Hooton. ' Equa-
tion (7) and a result similar to Eq. (4) but ex-
pressed in terms of normal-mode coordinates
were obtained by these authors.

Here, because the calculations are performed
in coordinate space, simpler expressions are
obtained. In addition, straightforward modifi-
cation of Eq. (I-53) shows that satisfaction of

Eq. (4) is also sufficient to produce the result

! to construct la, 0). Then a, is found and a new
matrix

O'V

n P 0'
s~. ar

2

is constructed and used to repeat the process.
A calculation following the procedure outlined

above has been made for solid neon at O'K.

Certain of the results are shown in Table I.
The zeroth iteration results are those from
the conventional harmonic approximation and
are given for comparison. The self-consistent
calculation begins with the first iteration, which
is an energy calculation to determine the opti-
mum uncorrelated Gaussian wave function which
is then used to compute 8', "' and C "'. Next,
C "' is used to construct the wave function from
which Wo"' and 4 (" are computed, etc. [In the
above a superscript (n) was used to indicate
values appropriate to the nth iteration. ]

This calculation was performed to illustrate
certain aspects of the theory and to show that
the wave function selected here gives a lower
value for Wo in a variational calculation than
was obtained variationally by Bernardes8 (—420

cal/mole), Nosanow and Shaw' (-431 cal/mole),
and Mullin" (—431 cal/mole). The values of
the Lennard- Jones parameter were, therefore,
taken to be e = 50.0x10 ' erg and 0 = 2.74 A,
in agreement with Hefs. 6-8. The energy was

Table I. Results for the ground-state energy Kp, nearest-neighbor (4'pg ) and second-nearest-neighbor (4 p2 )

force constants, and longitudinal (ci) and transverse (ct) velocities of sound in the [111]direction for solid Ne at 0 K.
Other components of the force constants for these two neighbors are easily obtained from the values given here.

Itera-
tion

—Wp

(cal /mole)
@01 4'01 @02

(units based ~n e and 0.)

@0288 Ci Ct
(105 cm/sec)

462
431
438
438

21.1
40.6
39.8
39.7

0.712
—1.65
—1.51
—1.49

—2.92
—2.96
—2.97
-2.97

0.469
0.481
0.483
0.483

0.969
1.48
1.41
1.41

0.516
0.673
0.679
0.678

SO



Vor.UMz I7, NUMszR 2 PHYSICAI. RzVrsW r. zTTKRS 11 JULY 1966

Ter IQ

Computed with
Ic, 0) lk, o)

84.7
-586.0

45.8
14.5
2.6
0.5

62.3
-586.0

62.3
26.8
6.5
1.4

not minimized with respect to b, but rather
5 =2.V4 A was chosen to agree with the optimum
value reported in Ref. 8. Thus, this theory is
compared with other theories. A detailed com-
parison with experiment will be reported in
the future. The value of -W, is in reasonable
agreement with the experimental value" 450
+ 10 cal/mole.

It should be noted that the expectation value
of the second derivative of the potential is quite
different from the second derivative for near-
est neighbors but that second-nearest-neighbor
and further force constants are not altered much.

Although space limitations do not permit an
adequate discussion of this point, an interest-
ing aspect of the numerical procedure used here
is that the contributions to W, from terms pro-
portional to various derivatives of the potential
7 are obtained almost trivially. Contributions
to W, "' and W, "' from these terms as well
as the kinetic energy K are shown in Table II.

Table II. Contributions to (0 I Hl 0) in cal/mole from
the kinetic energy K and from terms proportional to
the nth derivative of the potential V" computed with the
ground-state eigenfunctions of the self-consistent

I c, 0) and the traditional Ik, 0) harmonic Hamiltonians.

Note that in W, "', K = V'+ 2V'+ & V + ~

contributions for W, "' show clearly that solid
neon cannot be treated adequately by the tradi-
tional harmonic approximation. Note that W, "'
as given in Table I equals K+ V'+ V' here, and

that truncation of the Hamiltonian at V' results
in an error of approximately 35 cal/mole.

One can also show from Eq. (I-54b) that (c;
k, -k~ IIIIc, 0) =0. Since these matrix elements
would normally give rise to the largest correc-
tion in perturbation theory, the eigenfunction
of II(e) appears to be a logical set with which
to begin perturbation calculations.

The author wishes to thank %. R. Belier for
useful discussions about certain features of
this work.
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Anomalies in the tunneling conductance cen-
tered at zero bias have been found in several
experiments. ' These studies were performed
on a large class of p-n junctions, as well as
on junctions composed of normal metals sep-
arated by an insulating oxide layer.

In particular, Wyatt has observed' a peak
in the conductance, G(V), centered at zero bi-
as in tunneling junctions where Ta or Nb was

separated from Al by a thin oxide layer. Wy-
att found that G(V) could be divided into a tem-
perature-independent part G,(V) and a, strong-
ly temperature-dependent part b, G(V) = G(V)
-G,(V). b, G(V)/G, (V) varied as lnle V/kTI for
e V&kT, while bG(0)/G, (0) varied with temper-
ature as lnT. The effect persisted both above
and below the superconducting transition tem-
perature, when care was taken to quench the


