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Measurement of the two-particle one-hole or doorway-state strength function by suit-
able averaging of (d,p) and (p,p') cross section is proposed.

The structure exhibited by average proton
or neutron elastic cross sections is well under-
stood as due to a coherence of single-particle
amplitudes in many levels of the compound nu-
cleus. The single-particle strength function
is obtained by measuring these average cross
sections, and the bumps in the strength func-
tion correspond to single-particle resonances
in the average nuclear potential.

In addition to single-particle structure, it
has been proposed' that nuclear scattering should
show intermediate structure of two-particle
one-hole (2p-1h) cha.racter. The (2p-1h) states
leading to this structure have been called door-
way states. ' [ln these doorway states we include
states consisting of a particle coupled to a col-
lective mode with strong particle-hole compo-
nent; for brevity we refer to these also as (2p-
1h) levels. ] In this paper we discuss the pos-
sibility of measuring the strength functions for
these (2p-1h) states by combining data from
(d, P) and (P, P') experiments. This strength
function would give positions and widths of (2p-
1h) levels, which could then be used in attempts
to fit effective forces to nuclear structure.

We consider first the case N =Z, and use lev-
els in the A =41 system as an example, ' the two

experiments of interest are then Ca40(d, p)Ca i

and Ca (P, p')Ca'0. The (d, p) data of Belote,
Sperduto, and Buechner show both levels that
give single-particle stripping angular distri-
butions and those that do not. If there were
data available for a very large number of lev-
els in Ca~', it would be possible to do a sim-
ple averaging of the (d, p) data in order to look
for an intermediate structure modulation of
the mainly single-particle cross section. How-

ever, the data are too sparse for that, so we
cut down the background by simply throwing
away all 34 levels that show a single-particle
stripping pattern and then averaging the remain-
ing 71 levels that lie in the region of excitation
energies between 4.25 and 6.85 MeV. Fig. 1

shows a plot of

with the bracket denoting energy averaging over
the entire 2.5-MeV interval, then a purely sta-
tistical picture of the level strengths [distri-
bution ~ exp(—o'/P')] and spacings (Poisson dis-
tribution), together with the assumption that
any two levels are uncorrelated, gives

In(I)/D = 1.274,

where D is the average level spacing. Figure 2

shows a plot of In/D vs I for the Ca i levels
used in Fig. 1. The deviation from the value
given by Eq. (3) occurs at about 100 keV and

shows a coherence in the strengths or a cor-
relation of levels involving levels in a region
about 100 keV in width. This is consistent with

the structures of Fig. 1 and indicates that they
are not simply statistical fluctuations.

Of course, this does not show that these bumps
are in fact intermediate structure of (2p-lh)
character. A further test of their nature can
be made by doing Ca '(p, p') with incident pro-
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where I=100 keV, 8-2I-E' F-+-2I, and the
prime on the summation sign is to show that
single-particle levels are omitted. There are
five likely candidates for (2p-lh) states in Ca4'

evident in the figure. If we define
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FIG. 1. The quantity I(do/dQ) of Eq. (1) for I=100
keV, plotted as a function of E.
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FIG. 2. In(I)/D versus averaging interval I. The er-
ror bars are crude estimates assuming that the frac-
tional error is -N

tons at the energy of the Sc ' "analog" of the
suspected (2p-1h) state in Ca~' (when T= a', the
analog is simply the mirror nucleus, but we
call it the analog here because we discuss the
case N&Z later). The analogs of the bumps
in Fig. 1 are in the region of protons of 3.5 to
5.5 MeV incident on Ca . If the Sc~' state real-
ly is a (2p-1h) state, then it should have a rel-
atively large width for emitting a particle and
leaving the Ca 0 in a state of (lp-1h) character,
i.e., a particle-hole state. More quantitative-
ly, we expect that I" h/I g and therefore 0'ph/

crg should be la, rger in the region of the (2p, 1h)
analog than in the region of a single-particle
analog, where ph and g refer to leaving the tar-
get in (lp-lh) excited state and ground state,
respectively. In Ca ' there is a low-lying 3
particle-hole state at about 3.5 MeV which can
be used to test these states (except the first,
which probably is too low to excite the 3 strong-
ly). The experiment is then to measure cr3-(E)/
cr (E) in Ca 0(p, p') at energies corresponding

g
to both analogs of single-particle states and

analogs of the (2p-1h) candidates. A relative-
ly large value of cr3 /cr indicates a strong (2p-
lh) component.

3 g

Moreover, once the nature of the state is de-
termined, the ( p, p') experiment can give in-
formation about its spin and parity. The net
result is that by combining (d, p) and (p, p'),
we can get information about the (2p-lh) strength
function like the information about the single-
particle strength function that is obtained in
the same experiments. Because the (2p-lh)
strength is distributed over several Ca ' or
Sc ~ levels (about 8 each for the candidates in

Fig. 1), it is necessary to do the averaging in
such a way as to select the (2p-1h) component
of these levels, just as the single-particle gi-
ant resonances show up in averaged (d, p) and
averaged (p, p) cross sections when the aver-
aging is done over ranges of the order of 1 MeV.

Consider now the situation when N is great-
er than Z; for concreteness we use A =119 as
our example. The reactions of interest are
Sn'~ (d, p) and Sn'~a(p, p'). The (d, p) results
can be analyzed as above to try to reveal the
presence of (2p-1h) states in Sn"a. The Sn'"(p,
p') analysis seems more complicated, since
the analogs of single-particle states in Sn'"
are states in Sb" that consist of only a small
part of single-particle component [amplitude
(2T+1) '"] and are mostly (2p-1h) component
[amplitude (2T/(2T+I))'"], where T=9 is the
isospin of Sn'". (For N =Z, the analog of a
single-particle state is a single-particle state,
etc.) However, a simplification occurs because
the decay of the analog of a single-particle state
is mainly through its single-particle component,
so that the (p, p) resonance at the analog ener-
gy goes through the single-particle component
of the analog state [although the width is nar-
rowed by the factor (2T+1) ']. Similarly, the
analog of a (2p-lh) state in Sn is a state in
Sb"a that consists mainly of (3p-2h) component.
However, the (p, p') experiment goes through
the (2p-1h) component of this analog state, and
therefore again the ratio oph/og is a measure
of this (2p-lh) component of the analog state
and, hence, of the (2p-lh) component of the
original bump in the averaged (d, p) data. Just
a.s in the case N = Z, the combination of (d, p)
and (p, p') can be used to determine the (2p-
1h) strength function. In Sn'" there are sev-
eral (1p-lh) states available, with the 2 and
3 collective states being the most useful.
For A =119, the analogs of some single-par-.
ticle Sn'~a(d, p) states' have been seen in Sn'~a(p,

p) experiments and Sn"a(p, p') experiments. 7

However, the Su~~a(p, p') to the 2+ and 3 states
in Sn" shows more structure than is present
in the old (d, p) experiment, ' so there is a good
possibility that a higher resolution (d, p) exper-
iment might be able to give further information
about the extra structure in the Sn' (p, p') da-
ta. The data of Ref. 7 show a. number of res-
onances in Sn"a(p, p') leaving collective 3 and
2+ excitations that are good candidates for an-
alogs of (2p-1h) states in Sn"a, particularly
in the regions of excitation of Sn'" between
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0.8 and 1.4 and between 2.0 and 2.6 MeV. These
structures can be due to several things, such
as particle-vibration coupling, or noncollec-
tive (2p-1h) states. In order to distinguish among
the various possibilities, it is essential to mea-
sure the spins of the resonances in proton scat-
tering and also look at the (d, p) experiments
to the corresponding regions in Sn" . To sep-
arate noncollective (2p-1h) strength, it is nec-
essary to measure inelastic scattering to non-
collective particle-hole states in Sn'".
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We analyze the effect of CP noninvariance
in the decay K~ -3n under the assumption that
the violation of CP invariance, first observed
by Christenson et al. ,

' occurs in the weak in-
teractions. ' It ha, s been pointed outs& that the
violation of CP invariance may produce a dif-
ference between the Dalitz plots and partial
rates for K+-3n and its CPT conjugate state',
if CPT invariance is valid, these effects also
require the existence of strong final-state in-
teraction between the pions. The following

analysis. differs from a previous calculation by
Ueda and Okubo' in that (a) we use a different
parametrization of the CP nonconserving effect,
and (b) a pure I=1 final state is not assumed.
We shall examine in some detail the possibil-
ity of testing CP noninvariance with AI) —,

' as
suggested earlier. &~

We analyze the 7 and ~' decays in terms of
the four independent isospin states of three pi-
ons which can contribute to a matrix element
linear in the energy of the odd pion. Assuming
CPT invariance, we write

M(7. ) =2& exp(ib sip )+b exp(ib +i@ )(s -s )/p, '+c exp(ib +iy )(s -s )/p +d exp(ib +iy ), (1)
A. b b 3 0 c c 3 0 d

M(7' ) =-A exp(i6 'sip )+b exp(ib '+iy )(s -s )/p, '-c exp(i6 +i&p )(s -s ) /p 2+d2e x(pib airy ), (2)
A. A. b b 3 0 c c 3 0 6

where si =(PIf-Pi)2=(m —p)2-2mTi, i =1, 2, 3,
and the index 3 refers to the odd pion', the sym-
metry point is s, = —', (s, +s, +s,), T; is the kinet-
ic energy of the ith pion in the rest frame of
the K meson, and m and p. are, respectively,

the K and 7t masses. The 5 are the phase shifts
due to strong (CP-conserving) pion-pion interac-
tion, the y are the CP-nonconserving phases,
assumed for simplicity to be independent of the
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