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Supercooling in the normal-to-superconduct-
ing phase transition has been observed experi-
mentally, '~' and also has been discussed the-
oretically' ' for type-I superconductors. For
a bulk sample the supercooling field is

H = 1.69H = 1.69W2&H,sc c2 c

where ~ is the Ginzburg-Landau parameter,
v= Xi), and Hc is the thermodynamical criti-
cal field for the bulk superconductor. The su-
percooling characteristic of a number of met-
als has been observed by Faber, ' but only near
the critical temperature Tc. These results
have been used' to give reliable values of K

ar Tc.
Superheating in the superconducting-to-nor-

mal transition has been predicted theoretical-
ly. '~'~' The superheating field for a sphere
with radius x» ~, where ~ is the London pen-
etration depth, is'

sh C
(2)

The factor 3 accounts for the demagnetizing
field of the sphere, and the rest of the expres-
sion is the result valid for a semi-infinite sam-
ple in parallel field, with ~«1.

The large superheating predicted by (2) has
been difficult to observe in the sample geom-
etries used in previous experiments. Garfun-
kel and Serin' found H sh = 1.1 tHc in tin, and
Burger and galette' found Hsh= 1.65Hc, also
in tin. The superheating field predicted by (2)
is Hsh= 2.7Hc, using ~=0.1 for tin' and omit-
ting the factor 32 in order to get the result for
their geometry. The difficulty in obtaining
superheating is in general attributed to flaws
in the surface and end effects. Once the tran-
sition to the normal state has started at a "weak"
point, the new phase propagates over the en-

tire specimen and only the superheating typi-
cal for the defect is observed.

The idea of the present experiment is to ob-
serve the transition of a sample containing many
small spheres. A new phase cannot propagate
in such a sample, so that a nucleation process
is necessary in each sphere. The minimum
supercooling field and the maximum superheat-
ing field' measured are then characteristic
of the material and not of the defects.

The sample" used consisted of two-thirds
volume of dry indium spheres mixed with one-
third volume of quartz powder. The spheres
were made by sonoration of 99.999%%uo pure in-
dium in an organic liquid. They have diame-
ters ranging from about 1 to 5 p. We find a
critical temperature Tc = 3.396+ 0.002'K, which
is close to the values listed by Roberts. " The
pure nuclear quadrupole resonance is observ-
able in this sample at 4.2 K, indicating that
strains and surface effects are not important
enough to wipe out the resonance.

The sample was placed in the rf coil of the
tank circuit of a marginal oscillator of the Pound,
Knight, and Watkins" type, and the oscillator
frequency as function of applied field was mea-
sured at various temperatures. The external
magnetic field was produced by a superconduct-
ing solenoid, calibrated with a proton resonance.
The axis of the solenoid was parallel to the
axis of the rf coil. We obtained the curves of
frequency versus field directly on an X-7' re-
corder by feeding the X axis with a voltage pro-
portional to the magnet current, while the os-
cillator frequency was fed to a digital-to-ana-
log converter and then to the F axis of the re-
corder.

A typical hysteresis loop is given in Fig. 1.
The decrease in oscillator frequency is propor-
tional to the fraction of the sample that has
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FIG. 1. Oscillator frequency as a function of applied
field at T =2.567'K. vs =5.5220 Mc/sec, v„=5.3633
Mcjsec.

become normal. We believe H, to be the super-
heating field, and II, to be the supercooling field
characteristic of an ideal specimen of indium.
The finite slope of the lines H, II, and II,H, is
expected on theoretical grounds, since the field
seen by a sphere in the sample is larger than
the applied field because of the flux expulsion
from the superconducting spheres.

It is convenient to present the results in terms
of ~3 and K, as shown in Fig. 2. &, is calculated
using H, in (2) and K, using H, in (1). The val-
ues of II& are taken from Mapother. " For T
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FIG. 2. The Ginzburg-Landau parameter g in indium
as a function of the reduced temperature. z3 and w6

are derived from superheating and supercooling fields,
respectively. The increase of ~ near T~ is a size ef-
fect.

&0.7Tc, K, and v, agreeg within 4'. Near Tc,
~3 and &, both inc re ase rapid ly with te mpera-
ture. This increase is due to size effects. '
Since &, is not seriously affected by size effects,
it may be safely extrapolated to Tc, giving K(Tc)
= 0.070 + 0.005. This value of w obtaining from
the superheating fields agrees within experimen-
tal error with Faber's value' w = 0.066 obtained
from a supercooling experiment at T~. If we
assume that the size effect in &, is negligible
at low temperatures, we can conclude that the
values of & obtained from superheating and
supercooling fields are equal within experimen-
tal error at all temperatures.

It is important to remember that (1) and (2)
are derived on the basis of the Ginzburg-Lan-
dau equations which are valid only near T~ in
pure superconductors. For T & Tc we take Eq. (1)
to define ~= wsc from the supercooling field,
and (2) to define K = Ksh from the superheating
field, in a phenomenological way. We then note
that from a theoretical point of view &sc and

&sh thus defined may well be different for T
& T&, but they must coincide at Tc. In view
of this it is very interesting to see that our
results on indium indicate that Ksc and Ksh
are equal at all temperatures. We note that
w shows a strong temperature dependence.
Using different methods, Paskin et al."and
Chang and Serin" have seen similar behavior
in type-I materials. The latter investigators
find for indium a value of K(Tc) =0.11, which
is quite different from our result.

In conclusion we point out that our method
of observing superheating and supercooling
offers a powerful technique for studying the
varlatlon of & as function of temper atur 8 ln
type-I materials. Details concerning the tern-
perature dependence of K, as well as a more
thorough discussion of other topics presented
in this Letter, will appear in a later publica-
tion.

We thank J. P. Burger and C. Valette, who
are now doing similar work on mercury using
this method, for a number of useful discussions.
We also thank M. Cyrot and P. G. de Gennes
for stimulating discussions.
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Mathematical techniques have been described'"
by which one can perform an exact calculation
in coordinate space of the matrix elements of
a crystal Hamiltonian

between the eigenfunctions la;n) of a, harmon-
ic Hamiltonian'

H" '(a) = -', ) 'PP+ —,'a'qeq

appropriate to a crystal of the same symme-
try. Here a is a parameter which is essential-
ly a scale factor for the generation of a set of
harmonic Hamiltonians whose eigenfunctions
and eigerivalues are simply related, X' =h'/
(mv'e), and the Mie-Lennard-Zones potential
V(r) =4@[(v/r)"-(v/r)'] has been used, with
g and e as units of distance and energy, respec-
tively. We will also use

A similar notation is used for other vectors
and matrices. The coordinate of the ith par-
ticle is given by r2 and its equilibrium position
byR, dq. = -R .

It was found that W(a) =(a; OIH la; 0) and E~+(a)
—= (a;0 iH la; k~)-W(a) were readily obtained,
where la; 0) is the ground-state eigenfunction
of H"'(a), and la;ko) is the state with one pho-
non of wave vector k, belonging to the nth branch,
excited. Thus, a variational calculation can
be performed to determine the optimum value

ao of a and the ground-state energy Wo(ao) of
the crystal. The Ey~ =-Ey~(a0) then give the
phonon spectrum to first order.

In this Letter it will be shown that a logical
extension of the calculation described above
leads to the construction of a "self-consistent
harmonic Hamiltonian" for a crystal, which
we shall define as that Hamiltonian

v=-,' Q v(r )..

iwj in which

H =-,'i PP+-', qc q
(c), 2-, (c)

A notation is used in which q is a supervector
whose components are the vectors q, and the
Ca.rtesian components of qi are denoted by q;~.

(c)cP
2j

,
c, 0 . (4)
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