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We suggest that the broad shoulder observed in recent measurements of the pd elastic
differential cross section at 2 GeV is a double-scattering effect and propose that further
measurements be made to test whether double scattering persists at high energies.

In this note we suggest an explanation for the
broad shoulder observed in recent measure-
ments® of pd elastic scattering at 2 GeV and

propose an experiment to establish clearly wheth-

er or not double-scattering effects in deuter-
ons persist at high energies. Analyses®? of

a variety of particle-deuteron cross sections,
based upon the Glauber high-energy approxima-
tion,* suggest that these effects tend to persist
at least up to energies of 18 GeV. The influ-
ence of double scattering on the cross sections
which have been considered up to now, however,
has been considerably smaller in magnitude
than that of single scattering. We suggest that
high-energy pd elastic scattering at 0.5 (GeV/
c)?5-t<1.5 (GeV/c)?, where ¢ is the squared
four-momentum transfer, consists mainly of
double scattering. A test of this suggestion

at high energies could have a bearing on the
question of Regge-pole dominance since it has
been argued® that if the nucleon-nucleon (NN)
scattering amplitudes near the forward direc-
tion can be represented as a sum of Regge poles,
double-scattering effects should vanish much
more rapidly at high energies than is inferred
from the Glauber approximation.

To determine the momentum transfers at
which double scattering may dominate over sin-
gle scattering, consider, for an arbitrary in-
cident particle x, both xN and xd elastic scat-
tering at momentum transfers ¢ (we take Z=1)
which are sufficiently large so that the xN elas
tic scattering intensity doyp(g)/dQ is much
smaller than its value near the forward direc-
tion. The contribution to the xd elastic-scat-
tering intensity arising from single scattering
is proportional to® S*(z¢)do,n(g)/d, where
S(q) =(exp(q-T)) is the form factor for the deu-
teron ground state. In the Glauber approxima-
tion the intensity for xd elastic double scatter-
ing is asymptotically proportional to® [do,n(39)/

dQ]? in the limiting case of a deuteron whose
radius very greatly exceeds the range of the
xN strong interactions. But S?(3q)doyy()/dQ
typically decreases much more rapidly from
its value at ¢ =0 than does [doyy(3¢)/d2]?. Con-
sequently, although double scattering is much
weaker than single scattering for small ¢, it
becomes dominant at larger g. For some large
values of ¢, in other words, it is more prob-
able that the incident particle suffers two suc-
cessive collisions, each with momentum trans-
fer of the order of 34, than that it is scattered
with momentum transfer q by only a single col-
lision with a target nucleon.

The formula we shall use for our calculation
is independent of the deuteron radius. Its use
removes the restrictions that the deuteron ra-
dius very greatly exceed the range of the xN
strong interactions and that, consequently, in
each of the two collisions comprising the dou-
ble-scattering event a momentum of nearly
14 be transferred by the incident particle. For
a net momentum transfer q, a momentum of
34+’ may be transferred in a collision with
one target nucleon and a momentum of 34-4’
may be transferred in a collision with the oth-
er, where the vector §’ may take on a range
of values. At large values of g the intensity
for such elastic double scattering is greater
than the intensity for scattering in which mo-
mentum ¢ is transferred via a single collision
with a target nucleon.

The differential cross section do/dQ for xd
elastic scattering may be written in the Glau-
ber approximation in terms of the xp and xn
elastic-scattering amplitudes fyxp and fyy as

do/d=1SGDI/,, @ +7, ,@)]
i
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where f, and f, are scattering matrices for
collisions between particle x and target nucle-
on 1 and between particle x and target nucle-
on 2. The product f,f, is an operator in the
composite isospin space of particle x and nu-
cleons 1 and 2. The brackets () denote the ex-
pectation value with respect to the deuteron
ground state, which is an isotopic singlet (I =0)
state, and with respect to the initial isospin
state of the incident particle. This expression
does not violate the charge independence of
nuclear forces for particle interactions, and
it includes elastic double-charge-exchange pro-
cesses, i.e., processes in which the incident
proton undergoes a charge exchange with the
target neutron and the resulting scattered neu-
tron then undergoes a charge exchange with
the target proton, with the final state of the
target being the deuteron ground state.” At
momentum transfers larger than approximate-
ly 0.5 GeV/c this expression differs rather
dramatically from that in which the integral,
i.e., double-scattering term, is neglected.®
We shall be concerned here with ¢ in the range
0<-t<1.5 (GeV/c)?, where NN measurements
are fairly well represented by elastic-scatter-
ing amplitudes of the form

— (s 1 1 2
foy=Era ko /A exp(a t+3b 1), (2)
N=n,p.

We have calculated do/dS2 for pd collisions
at 2 GeV by means of Egs. (1) and (2).° As in-
put we have used the values app= -0.12, ap
=7.62 (GeV/c)™2, and Tpp =45.1 mb obtained
directly from pp measurements,**? and opy
=43.0 mb and apy, =0.20 obtained indirectly from
pp and pd measurements.'>!3 Since no value
of bp for pN scattering at 2 GeV has, to our
knowledge, been published, we have analyzed
recent pp data'* at 2.2 GeV and we obtain a val-
ue of 1.88 (GeV/c)™%. We obtained S(g) from
the analytic expression for the deuteron wave
function given as “Approximation III” by Mor-
avesik.!® That expression is a sum of eight
exponential functions multiplied by the inverse
neutron-proton separation which is fitted to
the Gartenhaus wave function.

The calculations, shown by the solid curve
in Fig. 1 together with the measurements,!’!3
present evidence for the importance of double
scattering at 2 GeV. The predicted minimum
and secondary maximum, the existence of which
is perhaps suggested by the measurements,
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result from the destructive interference between
the single- and double-scattering amplitudes
and from the relatively large amount of double
scattering at -2 0.5 (GeV/c)®. Our calculations
indicate that the shoulderlike departure of the
data for ~t between 0.4 and 1.5 (GeV/c)? from
the exponential trend of the diffraction peak is
not of the same nature as the secondary peaks
observed in recent 7¥p and K~p elastic scatter-

ing.!® We wish to note that this calculation con-
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FIG. 1. Differential cross sections in the laboratory
system for elastic pd scattering at 2.0 GeV. The solid
(broken) curve is the theoretical prediction, using nu-
cleon-nucleon data, when double scattering is treated
(neglected). The dotted and dot-dashed curves are cal-
culated with the experimental lower limits for apn and
Upp and with theoretical predictions for apn and app,
and include double scattering.
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tains no adjustable parameters and that the
input was determined from NN measurements.
It should be clear that changes within the quoted
statistical errors for the input could yield even
better agreement with the pd data, but that no
such changes would yield very large qualitative
differences.

The depth of the minimum is intimately con-
nected to the relative phase between the single-
and double-scattering amplitudes, and hence,
to the values of apy and app. The measured
values are'®!® 0.20+ 0.40 and -0.12+0.07, re-
spectively. Theoretical predictions!’ give Qpy
==0.50 and ap; =-0.28. If we assume ayy, =-0.20
and app =-0.19, for example, our calculations
are represented by the dotted curve in Fig. 1.

A further decrease in apy, and app to —0.50
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FIG. 2. Effect of different deuteron wave functions ¢
on the calculated differential cross sections. The
wave function used for the solid curve is a sum of
eight exponential functions multiplied by the inverse
neutron-proton separation. The parameters «, B8, and
v have the values 0.232 F~1, 1,202 F~1, and 0.0961
F~2, respectively.

and -0.28, respectively, yields a further re-
duction in the depth of the minimum as shown
by the dot-dashed curve. These curves strong-
ly suggest that oy, at 2 GeV is negative.

To compare the results of these calculations
with those in which double-scattering effects
are neglected, we have calculated do/dQ with
the integral in Eq. (1) set equal to zero. The
values of 0, and a  used for this calculation
were obtained by consistently neglecting dou-
ble scattering and were derived from pp and
pd measurements'®!®13 to be 38.8 mb and 0.21,
respectively. The results are shown by the
broken curve in Fig. 1.

In Fig. 2 we show the effect of using differ-
ent deuteron wave functions ¢ in our calcula-
tion. The wave function used for the solid curve
is presumably the most accurate. We see that
the results for the different wave functions are
all qualitatively very similar.

To determine whether double-scattering ef-
fects persist at higher energies, we suggest
further elastic pd measurements be made.

On the basis of presently available NN data we
would predict for pd elastic scattering at 19.3
GeV/c, for example, a broad shoulder centered
near —t=~0.5 (GeV/c)?.

It is a pleasure to thank Professor R. J. Glau-
ber for several useful discussions.
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In this note we consider the p-wave elastic
scattering amplitude®

F =[nexp(2i0)-1]/2iq®, )

which satisfies in the physical region the re-
lation

p ImF(s')
ReF(s)=FL(s>+;[t ey @

where F is the left-hand-cut contribution and
s is the physical threshold.? For simplicity
we do not allow bound-state poles in the ampli-
tude.

Our main purpose is to point out that such
an amplitude satisfies Levinson’s theorem [5(c)
=0] if? and only if the functions F; and 7 sat-
isfy a certain integral condition. Therefore,
if we know Fj and 1, we can predict whether
or not Levinson’s theorem is satisfied; con-
versely, if we assume Levinson’s theorem,
then a knowledge of F; can be used to put a
constraint on the inelasticity parameter 1 (or
vice versa). This is in contrast to the “normal”
(s-wave) situation, where F; and 7 can be cho-
sen independently, and where Levinson’s the-
orem must be imposed separately if it is re-
quired to hold (and in general always may be
imposed).

Essentially following Frye and Warnock,?
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we define an auxiliary amplitude
F =F +[(1-n)/2ig"]
=1 [exp(2i6)-1]/2iq?, ®)
which satisfies [cf. Eq. (2)]

- P * ImF(s’)
ReF(s)—FL(s)+n£t w(s’—s) (4)
with
F (e)= p (%, -ns))/2¢% (5
FL(s)=FL(s)+;Lt ds (s'—s) .
We then write F =N/D, where
Dis)= _l * [ (s-s )_M
D(s)_exp[ ”v/s; ds (_\S'—’_—_;:S(s'—s):' (6)

where s, is an arbitrary subtraction point (s,
<s;). Assuming that* 5(-) <37, we may then
set up the “N/D” equations

[ Ne(s—s F
) F () 1 oods, (s SI)FL(S )=(s sl) L(s)
= +
L ™ Jss (s=s,)(s"=5)

n(s ) g ™

N(s’)
(s'-s)’

o0
E(S)=1_lf dSI_‘E;:-_SLquT’—l(si)
m St §'=8,



