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In considerations of very long range inter-
actions between atoms or molecules, the in-
teraction of permanent magnetic or electrostat-
ic multipole moments seems to have been over-
looked. In some cases the permanent multi-
pole interactions give rise to the lead term
in the 1/R expansion of the interaction energy
(where R is the intermolecular separation).
Thus, the principal contributions to the ener-
gy of interaction of two ground-state hydrogen
atoms at separations greater than 50 A is due
to the spin-dipole-spin-dipole interaction en-
ergy which varies as R™3, rather than the dis-
persion energy which varies between R™° and
R™". While the dispersion energy is weakened
by retardation effects as R increases, the mag-
netic or electrostatic permanent-moment-per-
manent-moment interactions are not retarded.

Consider the interaction of two ground-state
hydrogen atoms separated by a distance R (en-
ergy and length in atomic units). For moder-
ately large separations where the charge dis-
tributions of the two atoms do not overlap and
R <X,, where %, is the reduced wavelength char-
acteristic of the important transition dipole
matrix elements occurring in the dispersion
energy, the interaction energy can be calcu-
lated by using the Breit-Pauli approximation
for the relativistic interaction Hamiltonian.!:2
The result for the interaction energy through
O(a?/R®), where a~1/137 is the fine structure

constant, is given by?®

2 2
_Aa +0.4004 _6.50+“. (1)

where A =0 for the !T state of the system, A
=1 for the ®2 state with Mg=0, and A =~1 for
the °% states with Mg =x1 (M is the projection
of the total spin of the system on the interatom-
ic axis). Here Aa?/R® is the spin-dipole inter-
action energy; —6.50/R® is the usual London
dispersion energy?* and 0.40a2/R*is a relativ-
istic correction!’s to the London energy. From
either the stationary state® or the S-matrix’
covariant quantum-electrodynamic calculations
of the interaction energy, it appears that the
permanent spin-dipole-spin-dipole interaction
energy is not retarded®® and therefore does
not change its functional dependence® when R
Z2%X,. Thus at very large separations, R >X,,
the energy of interaction of two ground-state
hydrogen atoms should have the form

:Aaz_ 37
ab R® oaRT

Feon, (2)
where -37(aR")™! is the Casimir and Polder!®
retarded dispersion energy. For the 3% states
the spin-dipole interaction energy dominates
for large separations.

The values of R for which the magnitude of
the spin-dipole-spin-dipole interaction ener-
gy equals the magnitude of the dispersion en-
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ergy can easily be calculated. Using'* Eq. (1),
the magnitudes of the two interaction energies
become equal at R ~50 A for the %2, 1 states
of the hydrogen molecule.
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At extremely large distances the hyperfine splitting
begins to retard the spin-spin forces. However, the
wavelength A is not involved, and in the normally so-
called retardation region (macroscopic distances >R
?w’/io), the spin-spin potential is not changed in its func-
tional form from its value in the near zone (atomic dis-
tances <R S&74).
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U1t should be pointed out that for R ~7(0 the dispersion
energy cannot be expanded in powers of 1/R, and the
exact quantum electrodynamic result of Ref. 10 must
be used. However, using the data of Ref. 1, it is easy
to show that the spin-dipole energy and the dispersion
energy become equal at a value of R for which Eq. (1)
represents the interaction energy very accurately.
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In this communication we report new results
in the behavior of the n =2 excitation cross sec-
tions in atomic hydrogen for incident electron
energies smaller than the » =4 threshold. Be-
cause of the continuing lack of agreement be-
tween theory and experiment in this, one of
the most simple atomic scattering problems,!
we have attempted to clarify the situation by
solving the electron—-hydrogen-atom Schroding-
er equation using the close-coupling®’® method
with the inclusion of all the first six (1s through
3d) eigenstates of atomic hydrogen. The results,
compared in Figs. 1 and 2 with those of previ-
ous,* more restricted calculations,” show a num-
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ber of important features which we now discuss.?
We first notice the rapid decrease in the ex-
citation cross sections which sets in at the en-
ergy of resonances (which we find and discuss
below) occurring just below the n =3 threshold
and leads to a divergence between the two sets
of results at higher energies. At the same time,
for energies below those at which the effects
of the n =3 states become noticeable, there is
little difference between the two approximations.
This effect is noticeable in all partial waves,
and we believe on the basis of these results
that the close-coupling expansion is reliable
up to an energy corresponding to the thresholds,



