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A plausible description of the behavior of a 4t meson in aqueous solutions is given
which suggests a reduction of almost 20 parts per million in the measured ut magnetic
moment. When combined with muonium hyperfine measurements it supports a value of
the fine structure constant which almost halves the disagreement between theory and ex-
periment for the hyperfine structure in hydrogen.

Accurate measurements of the precession
frequency of u+ mesons in a magnetic field
have been performed for mesons stopped in
water and aqueous HCL.! From the ratio of
.t and proton precession frequencies, the ra-
tio of magnetic moments has been inferred
to be

=3.183 38+ 0.000 04. 1
uu/up (1)

When combined with the measured hyperfine
splitting in muonium by the Hughes group,?
it yields an inverse fine-structure constant

a™'(H)=137.0388+0.0013, (2)

in much better agreement with the value of
Lamb, Triebwasser, and Dayhoff,?

o~ (L) =137.0388+0.0006, (3)

than that based in part upon a measurement
of Robiscoe,*

a~'(R)=137.0370+ 0.0006(?). (4)

However, the very accurately measured hyper-
fine splitting in hydrogen®s® gives

a~}(HFS)=1317.0352. (5)

To infer a~?! from the measured hyperfine split-
ting requires knowledge of the proton charge
and magnetic-moment distributions, which

are known, and its polarizability at all frequen-
cies, which is not known in any detail and has

not been included in arriving at the @™ of Eq. (5).

Calculations of the contribution of the proton’s
3-3 resonance to its polarizability” change a™*
of Eq. (5) by less than one part per million.
Drell and Sullivan® have estimated polarizabil-
ity from other “excited states” of the proton
but their total effect does not yet exceed a few
ppm.

The magnetic-moment ratio of Eq. (1) is based
upon the assumption that the chemical environ-
ment of a u+ in water is identical to that of
a proton, so that the diamagnetic shielding
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corrections (chemical shift) are the same for
both. In water the chemical shift reduces the
applied magnetic field on a proton by 26 ppm.
Because of its much lighter mass and higher
zero-point energy, a u+ meson can form a
type of bond between water molecules which
is considerably stronger than the usual hydro-
gen bond. Such a u* bonding may be expected
to remain unbroken by normal thermal agita-
tion during the microsecond lifetime of the
muon so that during the magnetic-moment pre-
cession measurement, the u* does not replace
a proton in a normal water molecule. The
chemical shift of the put in this state is esti-
mated to be about 15 to 20 ppm less than that
of the water proton with which it is compared.

A free proton in water (or aqueous HC1) will
attach itself to an H,O molecule! and form hy-
dronium (HgOt), where it will generally par-
ticipate in a hydrogen bond with a neighboring
water molecule (Fig. 1). In the Born-Oppen-
heimer approximate description the proton
moves in a fixed potential well similar to the
double oscillator potential of Fig. 2. The pa-
rameters are consistent with the measured
stretching frequency of the OH bond of water
and hydronium (10 x10*® sec™!), the OH sepa-
ration in HyO*+ (1.06+0.04 x10™8 c¢m),® the O-O
distance between such hydrogen-bonded neigh-
bors (2.45 Zx), and various experimental facts
about activation energies and conductivities
of water and heavy water.® The potential-well
parameters are close to those of Ref. 9 and
not critical for the subsequent discussion.

The height V, of the potential barrier which
separates the two harmonic oscillator wells
is about 0.6 eV. The zero-point energy of a
proton in such a well, E,(p), is 0.23 eV. The
existence of the second oscillator potential has
only a very small effect on the proton zero-
point energy because the barrier-penetration
probability for a proton almost 0.4 eV below
the barrier height is only a few percent.

Any hydrogen-bonded proton on the HO" of
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FIG. 1. The potential seen by a proton (or u*) attached to a water molecule to form H3O+ in water. The lowest
energies, E¢(p) and E¢(u), of a proton and u* in this potential are shown together with the probability distributions
|sz2 corresponding to the respective ground states. In the schematic configuration above the black dots are protons,
and the open circles are oxygen atoms; the dashed line represents a hydrogen bond.

Fig. 1 can migrate to the equilibrium position
near its neighbor in less than 107'2 sec. If
proton 2 or proton 3 moves away, proton 1 will
find itself in the normal potential of a proton
in water, hydrogen bonded (i.e., largely elec-
trostatically attracted) to a neighboring water
molecule. Its effective potential is similar

to that in Fig. 2. Again the secondary poten-
tial minimum near its neighbor has an entire-
ly negligible effect on the zero-point proton

E,(#)~0.69
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FIG. 2. The potential seen by a proton (or u*) in a
normal water molecule hydrogen bonded to a neigh-
bor.!% E¢(p) and E,() are the energies of a proton and
ut in such a potential.

energy or its wave function.

When a p*+ meson comes to rest in an aque-
ous solution, it first forms the analog of hy-
dronium (H,Ou)* with the u* replacing, say,
proton 1 in Fig. 1. However, the double oscil-
lator potential greatly changes the value of the
u+t zero-point energy and wave function rela-
tive to what they would be in a single oscilla-
tor potential. (Because its mass is one-ninth
that of a proton, its zero-point energy in a
single oscillator would be 3 x0.23 eV =0.7 eV,
greater than the 0.6-eV barrier height.) In
the well of Fig. 1 the muon zero-point energy
E (1) is computed to be 0.40 eV. Thus the p+
in the configuration of Fig. 1 is bound with only
0.17 eV less energy than the proton. However,
if one of the protons of (H,Ou)* were to migrate
away and leave behind HpO, the p* meson then
moves in the single oscillator potential of Fig. 2;
the muon zero-point energy would rise to al-
most 0.7 eV, 0.46 eV greater than that of a
proton in the same state. Thus the configura-
tion of Fig. 1 with the u* meson shared equal-
ly by the two water molecules on each side is
stable by (0.46-0.17)~0.3 eV against losing
proton 2 or proton 3 to one of the neighboring
H,0 molecules. (This is twice the energy of
a hydrogen bond.)

Because of thermal fluctuations, this lowest
energy configuration (H,0-u*+-H,0) will ulti-
mately be destroyed by the migration of one
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of the water protons leaving behind HuO in which

the pu* replaces a proton and has a wave func-
tion similar to that of a typical proton in wa-
ter. However, at room temperatures a rough
estimate!! suggests that this may take much
longer than the u* lifetime. If the ut remains
in the shared (H,0-u*-H,0) configuration for
a few microseconds, its probability distribu-
tion during the magnetic-moment measurement
is that of Fig. 1. The characteristic separa-
tion of the u* from the nearest O~ is about
0.14 greater than that of the proton in H,O",
In proton magnetic-moment resonance exper-
iments on various compounds, the diamagnet-
ic chemical shift 6 relative to that of a free
proton tends to decrease in magnitude as the
proton—negative-ion distance R increases. (For
example, both Ad and AR are proportional to
the change in stretching vibration frequency
of hydrogen-bonded protons.*?,*®) The quanti-
tative effect upon 6 of stretching R may be esti-
mated for specific models of hydronium. The
extreme electronegativity of O suggests a sim-
ple picture of H;O":H,O plus a proton resonat-
ing among the three configurations in which
a single one of the three equidistant protons,
in turn, does not have a full covalent bonding
to the core O. Such a model for H,Ot implies
that each OH bond should be one-third ionic
and two-thirds the usual covalent bond.'® When
averaged over orientations in a magnetic field,
0 for a proton not enveloped by covalent-bond
electrons is expected to be much smaller than

that for a proton in a water molecule, and we
shall neglect it. Then the expected proton &

in HyO" is about two thirds that in normal wa-
ter except for the effect of the “ionic” proton
on the electrons of its neighbors, which has
been estimated® to change 6 by +7.4 x10~*°

xE? or about 2 ppm when E is the electric field
of the “ionic” proton. Instead of the —26 ppm of
of water, the estimated 6 for HO* is —($)(26-2)
=-16 ppm, in agreement with the experimen-
tal value of Table I. The stretching of a sin-
gle one of the proton-O separations when that
proton is replaced by a 1+ meson causes a re-
duction in the fraction of covalent bond between
pt and O from £ and also a change in the elec-
tron distribution associated with this bond.

A simple approximation for AS when a cova-
lent bond is stretched follows from the “aver-
age energy approximation”!” for the chemical
shift of a proton in a molecule with axial sym-
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metry:

5 =%CZZ [<-:;> -<:f> : <fk>]. ®)
k

Here ;k is the vector distance between the pro-
ton and the kth electron, m is the electron mass,
and the expectation value is taken with respect
to the ground-state electron wave function.

When the Coulomb repulsion between electrons
is neglected, the dependence of 6 upon R for
identical atoms can be expressed in terms of
derivatives of the interatomic potential V(R):

;ﬁaﬂﬁ[}zv"m)ﬂuzwm)], (7)

In the absence of a satisfactory quantitative
theory, we apply Eq. (7) to the potential of Fig. 1
when a proton is replaced by a u*. For AR
~0.1A, A6~+2x10"%,

The decrease in the covalent character of
the u*-0O bond has been estimated for a mod-
el of three fixed positive charges surrounding
a positive ion with enough valence electrons
to form only two covalent bonds. Electron-elec-
tron interactions and electron exchange direct-
ly between the protons is ignored. In a Heitler-
London approximation for the core-proton bonds,
the relative decrease in the covalent-bond prob-
ability when one of the “protons” (u+ meson)
is moved slightly further away from the core
than its two companions is (§)AU/U, where
U is the exchange energy. For U proportion-
al to that of the hydrogen molecule or H,*,

U~C(1+R/a,) exp(-Ra,) (8)

with C a constant, a, the Bohr radius, and R,
in this case, the Q-H separation. Then AU/
U~-0.9 AR/a,, and the covalent bond probably
in H,0-p* is reduced from § by $(0.2). When

Table I. The O-H distance R and chemical shift 6
for various forms of water.

R -5
Molecule Q) (ppm)
H,0O (vap.) 0.965 31
H,0 (liq.) 1.00 26

Hz0" 1.06 +0.04 152
H,0-u*-Hy0 1.13+0.04 11,5 (?)
aSee Ref. 14.
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this reduction is combined with the change in

& predicted from Eq. (7), the total reduction

in screening compared with that in HO" is
estimated to be +3(0.2)21 + 2(2) ppm, which
leads to the first entry of the last column of
Table I. The second entry is a linear extrap-
olation based upon the unsupported presump-
tion that the (A8)/(AR) measured for the stretch-
ing between H,O vapor and liquid is also appro-
priate to the stretching from H,O" to H,0Out.
(The uncertainty in R for H30+ does not reflect
a comparable uncertainty in AR between HyOt
and H20u+.) Although there is no definitive
model for hydronium,'® it appears that a & of,
say, —10 ppm is perhaps even more plausible
than the usually assumed —-26 ppm. Then in-
stead of Eq. (2) we would have

a~}(H)=137.0377+0.0013, 27)

in somewhat closer agreement with Eq. (4),
which disagrees with the hydrogen hyperfine
structure value by 18 instead of 36 ppm.
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