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where

0'23 = S 2zs + PBz p

Q)i =Pg + Fflg

(2a,)

(2b)

Now the integration in the Faddeev equations

Much of the work which is currently being
done on the three-body problem is based on
the Faddeev equations' in the separable approx-
imation, "3 and on some simple heuristic exten-
sions of the Faddeev equations to the relativis-
tic case.~ ' However, although many calcula-
tions of this type have been done, or are not
undertaken, their limitations are far from be-
ing generally recognized. In fact, one cannot
hope they will be able to describe thoroughly
all the aspects of three-body interactions.

It is our purpose in this Letter to discuss
the range of applicability of such models togeth-
er with some of their important qualitative fea-
tures.

(1) Practical limitations of the separable pole
approximation. —In the nonrelativistic case,
the two-body amplitude for the scattering of
particles 2 and 3 depends upon the off-shell
energy f2~ of the two particles. This quantity,

&», is related to the total energy z of the three
particles by

g„=z —p, '/2m, .
In the relativistic case, the relation between
the total invariant energies squared 0» and s
1s

is done from p, =0 to infinity. If we keep to
the relativistic case for definiteness, this im-
plies that cr» varies from (s'"-m, )' to -~.
The two-body amplitude is correctly represent-
ed by the separable-pole approximation to a
resonance or bound state with mass mg in the
neighborhood of 023 =m~'. Accordingly, if s
&(mfl+ml)2, the whole integration in the Fad-
deev equations is made on a region where the
two-body amplitude is unreliable. '

This is a very strong limitation of the approx-
imation and, for instance, precludes any attempt
to find the ~ meson as a 7t-p bound state with
such an approximation, as a recent paper nev-
ertheless suggests. e (I et us note, furthermore,
that in this particular example, the centrifu-
gal factors displace the region of applicability
of the equations much higher than m&+m~. )
Many of the proposed applications suffer dras-
tically from that criticism, which concerns
not so much the separable aspect as the pole
dominance.

(2) Influence of the Peierls singularities. —
Above the particle+ resonance threshold the
pole approximation becomes reasonable. Al-
so, it has been shown that it can generate three-
body resonances which are remarkably stable
under the approximations. ' '

Considering three-pion scattering in the I=O,
J =1 channel, we can approximate the v-7t

scattering amplitude by keeping only the pole
of the p meson.

In that case, the equations reduce to a one-
variable integral equation with the kernel

3v (x -1)(y -1)
t

+'d&(1-& )[x+y+a(g)] g[p(x, y, a(&))]g[p(y, x, a(&))]
(2w) D[o(sy)] a, a(&)f[x+y +a(&)]'-s) p(x, y, a(&))p(y, x, a(&))
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FIG. 1. Plot of the largest eigenvalue versus Re(s~ )
in pion masses for Im(s ) = 0.4m„{physical sheet).
The dashed curve is the real part, the solid curve the
imaginary part. Points A, and B can characterize the
position of the singularity. The three-body resonance
will appear in the vicinity of point C, where the real
part of the eigenvalue passes through 1, while its imag-
inary part is small.

cr(s, y) =s —2ys'/2+1, (4c)

and where s is the three-body invariant ener-
gy squared; we have taken m~ =1. The function
g(p) is the p )T )/ for-m -factor, and D(0) is the
two-body D function

oo x 4) 1/2 [gl(x 4)1/2)]2dx
D(o) =c+16 ~

'

7l +4x X—0'

For a given functional form of the form factors,

where

a(p) [x2+y2 1 + 2(x2 1)1/2(y2 1)1/2$]l/2 (4a)

P(x, y, a) = —,'[(y+a) —x -3]1', (4b)

and

D(v), and therefore the constant c, is complete-
ly determined by the mass and width of the p.

Pinchings between the singularities of the
Green's function and those of the function 1/D
(branch point and pole) yield that as a function
of s, the trace of the kernel has three singu-
larities: the three-pion threshold s = 9m~2,
the ))-p threshold s =(mp+m~), and the Peierls
singularities at s =2mp'+m~' and s =[(mp2-m~2)/
m2] of which only the first one, which is clos-
est, may be important. '~ Any singularity of
trK will also affect the eigenvalues.

Although it has been argued that the Peierls
singularity is on a Riemann sheet which does
not communicate with the physical sheet, "it
is worth seeing numerically if it appears to
affect the energy behavior of the eigenvalues
in the physical region.

Preceding calculations have shown that there
is an eigenvalue g of K, much larger than the
others, which behaves as shown in Fig. 1. For
the physical value of the p mass it has a sin-
gularity (visible as a bump in the imaginary
part and a corresponding zero in the real part)
which could not be directly ascribed to the 7t -p
threshold or the Peierls singularity. '~

We have let the p mass vary from 3m& to
10(bn~ in order to follow the singularity. As
visible from Table I, it follows quite closely
the m-p threshold. Furthermore, no noticeable
effect in ~ or trace E could be detected near
the Peierls singularity.

As a conclusion, even if the Peierls singu-
larity may play a role in the properties of the
three-body amplitude, "no connection, even

Table I. Positions of points A and B of Fig. 1 as the mass of the p is varied. MP is the p mass; 1"p is its width;
Im{s~ ) is the distance above the real axis at which we operate; p and B are the positions of points & and B; Mp
+m~ is the abcissa of the ~-p, threshold; and P.S. is the abcissa of the closest Peierls singularity. All energies
are expressed in pion masses. In the first three lines one can see that with the actual p mass and width one can-
not conclude but that by decreasing I' and Im(s ) we come closer to the singularity. It can be seen in the follow-P
ing lines to be quite close to the 7t-p threshold. We have checked that when I'p 0 and Im(s ) 0 the singularity
remains, becomes more and more peaked, and points A and B come together at MP +m&.
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3.0
6.0
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11.0
100.0

0.7
0.1
0.1
0.1
0.1
0.1
0.1
0.1

0.4
0.4
0.15
0.4
0.4
0.4
0.4
0.4

7.08
6.65
6.50
4.20
7.28

10.43
12.53

101.6

6.95
6.60
6.47
4.15
7.22

10.33
12.42

101.5

6 4
6.4
6.4
4.0
7.0

10.0
12.0

101.0

7.7
7.7
7.7
4.4
8.5

12.8
15.6

141.0
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remote, can be established between the posi-
tion of the singularity and the energy variation
of the amplitude (including the position of res-
onances) in the equal-mass case. Let us notice
that the relativistic aspects of the present cal-
culation are not essential to the discussion.

(3) Spurious singularities at s =0.—We now
turn to difficulties which appear specifically
in relativistic Faddeev-type calculations.

As obvious in Eqs. (2a) and (4c), the "rela-
tivistic" Faddeev kernel that we have written
in Eq. (3) has spurious singularities at s =0.
These come from the s'" factor which enters
the equations in a nontrivial way.

Note that this does not appear directly in the
Alessandrini-Omnes equations, nor in those
of Blankenbecler and Sugar, ' but the reason
for that, as these authors pointed out, was that
the two-body amplitudes had an anomalous de-
pendence on the energy of the third particle,
and as a consequence the cluster property was
not satisfied. Thus, in order to put the equa-
tions into a practical and understandable form,
Basdevant and Kreps' replaced this anomalous
dependence by Eq. (2a). Since the separable
approximation is made from the beginning in
the derivation of the equations of Freedman,
Lovelace, and Namyslowski, ' these authors
obtain directly the equations used by Basdevant
and Kreps.

Note also that this is a consequence of off-
energy-shell relativistic kinematics, and will
appear in any n-body calculation where one

will want to reduce the Bethe-Salpeter equation
to a linear integral equation involving three-
momenta. Thus it is only in the two-body case,
where a symmetric choice of variables is pos-
sible, that the application of the Blankenbecler-
Sugar techniques' does not lead to such diffi-
culties.

We will only sketch, here, the various aspects
of these spurious singularities. The complete
numerical investigation, which we have done,
would be tedious, and will be given in a subse-
quent paper.

First there is a branch cut in the variable
E=s'". In fact, for negative values of E, we
are not integrating over positive values of the
two-body energy. Therefore, the two-body
cut will reappear and give rise to a cut in the
three-body energy (the eigenvalues are not real
for -3 &K&0). We have computed the discon-
tinuity across this cut and it is quite important.
Also, our calculations show that the pinching

of the singularities mentioned in the second
paragraph is now much more important than
for positive values of E. A true "Peierls mech-
anism" seems to develop, and its discontinuity
is very large. This can very strongly influence
the magnitude of the eigenvalues at s = 0.

But perhaps the most remarkable fact is that,
for s =0, one can see from Eq. (2a) that only
one two-body energy completely determines
the three-body eigenvalues I In the calculation
of trK mentioned above, the value of this
quantity at s = 0 does not decrease but tends
to a constant value of the order of -1, when
the p mass increases. Thus this singularity
is important in determining the eigenvalues
near s = 0. The effect will be particularly marked
in the case where two of the particles have a
bound state at the mass of the third particle.
In that case, at s = 0 the D function vanishes,
and we always integrate over an infinite func-
tion. One can easily see that in this situation
an infinite number of bound state poles, with
an accumulation at the origin, appear in each
partial wave. This would happen for instance
in a three-scalar-meson calculation if the sca-
lar meson is itself considered as a bound state
of two scalar mesons. This would also happen
in a vNN calculation by putting in the nucleon
as a bound state of vN (of course, in this latter
case the region of interest is far from s =0).

A less drastic, but nevertheless serious,
situation occurs when there is a virtual state
near 0=m, '. Indeed, in that case, the on-the-
energy-shell S function e»~ has a pole in the
second Riemann sheet and a zero in the phys-
ical sheet where the scattering amplitude takes
the value -i/2q, which is large. Accordingly,
a calculation of the pion as a bound state of
three pions, viz. , the ABC virtual state, as done
by Ahmadzadeh and Tjon, ' is almost complete-
ly determined by the spurious singularity and
is not reliable.

Our calculations have also shown that these
spurious singularities do not strongly affect
the qualitative features discussed in the sec-
ond paragraph of this Letter. Therefore, these
"relativistic" equations can still be used to
investigate certain intermediate energy prob-
lems such as the properties of the A mesons.
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It has been suggested by Dashen and Gell-
Mann' that particle states form, in the limit
Pz - ~, simple combinations of irreducible rep-
resentations of the chiral U(3)SU(3) group.
Recently, several authors' ' considered this
problem and treated explicit examples of such
representation-mixing schemes for baryonic
states. The properties of the particles that
were calculated from theory and compared
with experiment were all either weak or elec-
tromagnetic ones; namely, axial-vector cou-
plings (gA and G*) and their D/F ratio and
ratios of magnetic moments.

In the present Letter we use partial conser-

vation of axial-vector current (PCAC) to eval-
uate the axial-transition amplitudes from known
n coupling constants. This way we can analyze
the data obtained from strong interactions and
compare them with the group theoretical pre-
dictions. This will be applied, as a test, to
mixing schemes for baryons, and it will enable
us to deal with mesons, too.

Let us define A~ as the axial "charge"

i y3, Ai

where i is an isospin index. Using PCAC we
can write the matrix element of A~ between
different mass states as'

(Ap IA IBp )=-) d x8(x )gp Is j IBp )1 2 0 1 p JL(, 2

=-C(2m) 5 (p -p )J( "',', exp[i(E -E )x ]JAP Ij (0)IBP ),

where

2

. Ai i
' NA xr

m g K (0) m
'

NNv NNv

Now let us define

lim I (AP~ IA I BP,) I
= a (A, B)5 (p~-p, ),

z

(4)

ln the following we will assume that KNN„(0),
as well as all other ~-vertex form factors eval-
uated at q'=0, is approximately l. [The as-
sumption that is necessary for our purposes
s +AB77( ) +NN77( ) ]

778

and the relativistically invariant amplitudes

(2v) (4ElE2) APll j, (0) IBP2
3 l/2

=F (pip ) for bosons, (5a)AB


