R. Keuser for supervising the flight operations.

*Research supported by the U. S. Atomic Energy Commission and National Aeronautics and Space Administration.

†Work done while a National Aeronautics and Space Administration Predoctoral Fellow at Case Institute of Technology.

¹S. Hayakawa, H. Okuda, Y. Tanaka, and Y. Yamamoto, Progr. Theoret. Phys. (Kyoto) Suppl. <u>30</u>, 153 (1964); R. Gould and G. Burbidge, Ann. Astrophys. <u>28</u>, 171 (1965); G. Garmine and W. Kraushaar, Space Sci. Rev. <u>4</u>, 123 (1965); V. L. Ginzburg and S. Syrovatsky, Usp. Fiz. Nauk <u>84</u>, 201 (1964) [translation: Soviet Phys.-Usp. 7, 696 (1965)].

²G. R. Burbidge and F. Hoyle, Nuovo Cimento <u>4</u>, 558 (1965); H. Alfvén, Rev. Mod. Phys. <u>37</u>, 652 (1965).

³E. Teller, private communication.

⁴A. G. Ekspong, H. K. Yamdagni, and B. Bonnevier, Phys. Rev. Letters <u>16</u>, 664 (1966).

⁵C. Baltay, P. Franzini, G. Lutjens, J. C. Severiens, D. Tycko, and D. Zanello, Phys. Rev. <u>145</u>, 1103 (1966), and earlier papers. The authors are indebted to Dr. J. C. Severiens for communicating their data in a form suitable for this calculation.

⁶E. Amaldi, G. Baroni, G. Bellettini, C. Castagnoli,

M. Ferro-Luzzi, and A. Manfredini, Nuovo Cimento <u>14</u>, 1 (1959).

⁷G. M. Frye, Jr., L. H. Smith, A. A. Hruschka, J. R. Goff, and A. D. Zych, to be published.

⁸E. T. Byram, T. A. Chubb, and H. Friedman, Science <u>152</u>, 66 (1966).

⁹J. G. Duthie, E. M. Hafner, M. F. Kaplon, and G. G. Fazio, Phys. Rev. Letters 10, 364 (1963).

¹⁰G. Svensson, Arkiv Fysik 13, 347 (1958).

¹¹G. de Vaucouleurs and A. de Vaucouleurs, <u>Catalogue</u> of <u>Galaxies</u> (University of Texas Press, Austin, Texas, 1964).

¹²I. I. K. Pauling-Toth, C. M. Wade, and D. S. Heeschen, Astrophys. J. Suppl. 13, 65 (1966).

¹³H. B. Ögelman, J. P. Delvaille, and K. I. Greisen, Phys. Rev. Letters <u>16</u>, 491 (1966).

¹⁴W. Kraushaar, G. W. Clark, G. Garmire, H. Helmken, P. Higbie, and M. Agogino, Astrophys. J. <u>141</u>,

845 (1965).

¹⁵R. Cobb, J. G. Duthie, and J. Stewart, Phys. Rev. Letters <u>15</u>, 507 (1965).

¹⁶M. P. Savedoff, Nuovo Cimento <u>13</u>, 12 (1959).

ALGEBRA OF CURRENTS AND THE $K_1^0 - K_2^0$ MASS DIFFERENCE*

Riazuddin

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania

and

V. S. Mathur[†] and L. K. Pandit[‡]

Department of Physics and Astronomy, University of Rochester, Rochester, New York (Received 4 August 1966)

The $K_1^{0}-K_2^{0}$ mass difference is calculated exactly from some recently suggested nonleptonic decay models by use of the techniques of the algebra of currents. We find $M(K_2^{0}) - M(K_1^{0}) = 0.49/\tau(K_1^{0})$, which agrees in both sign and magnitude with the recent experiments.

Recently several authors have $proposed^{1-6}$ effective Hamiltonians for the nonleptonic hadron decays, which are guite different in structure from the usual current-current model. Through the use of the techniques of the algebra of currents, these models have led to a good description of the nonleptonic decays.^{1,2,6} In the present note we shall show, by using the same techniques, that these models also lead to an exact evaluation of the $K_1^{0}-K_2^{0}$ mass difference. Both the sign as well as the magnitude of the mass difference are found to be in good agreement with the experiments. It may be emphasized here that an unambiguous evaluation of this mass difference has not so far been possible with the current-current model.

The second-order self-energy of K_1^0 or K_2^0

due to the weak interaction is given by 7

$$\Delta E = \operatorname{Re} \frac{(2\pi)^{3}}{2i} \int d^{4}x [\langle K_{j}^{0} | T(H_{w}(x)H_{w}(0)) | K_{j}^{0} \rangle - \langle 0 | T(H_{w}(x)H_{w}(0)) | 0 \rangle], \qquad (1)$$

so that the $K_2^0 - K_1^0$ mass difference is given by

$$\Delta m = \Delta E \left(K_2^{0} \right) - \Delta E \left(K_1^{0} \right)$$

$$= -\operatorname{Re}(2\pi)^{3}i \int d^{4}x \langle K^{0} | T(H_{w}(x)H_{w}(0)) | \overline{K}^{0} \rangle.$$
 (2)

Since the parity-conserving and the parity-nonconserving parts of H_w do not interfere in Eq. (2), we may consider their contributions separately.

Now, to get at Δm by the techniques of the

algebra of currents, we shall start by defining the following amplitude:

$$M_{\mu\nu} = i \int d^4 x \, e^{-iqx} \langle K^0 | T(J_{\mu}(x)J_{\nu}(0)) | \overline{K}^0 \rangle, \tag{3}$$

where $J_{\mu}(x)$ stands for the seventh component of the vector or the axial-vector current densities $[\mathfrak{F}_{\mu}, 7 \text{ or } \mathfrak{F}_{\mu}, 7^5 \text{ in Gell-Mann's notation and } (1/2i)(V_{\mu}2^3 - V_{\mu}3^2) \text{ and } (1/2i)(A_{\mu}2^3 - A_{\mu}3^2) \text{ in the standard SU(3) tensor notation}].$ Then integrating by parts we have

$$q_{\mu}q_{\nu}M_{\mu\nu} = i\int d^{4}x \, e^{-iqx} \langle K^{0} | T([\partial_{\mu}J_{\mu}(x)][\partial_{\nu}J_{\nu}(0)]) | \overline{K}_{0} \rangle + i\int d^{4}x \, e^{iqx} \langle K^{0} | \delta(x_{0})[J_{0}(x), \partial_{\mu}J_{\mu}(0)] | \overline{K}^{0} \rangle$$

$$+ q_{\nu}\int d^{4}x \, e^{-iqx} \langle K^{0} | \delta(x_{0})[J_{0}(x), J_{\nu}(0)] | \overline{K}^{0} \rangle.$$
(4)

The first term on the right-hand side of Eq. (4)in the limit $q \rightarrow 0$ will be shown to be directly related to Δm . Before this is actually done, we shall discuss each of the terms in Eq. (4)for the cases $J_{\mu} = V_{\mu}$ and $J_{\mu} = A_{\mu}$ separately. It is simple to see that the second and the third terms on the right vanish in the limit $q \rightarrow 0$. The third term involves an equal-time commutator between a "charge" and a current density which is calculable from the guark model and cannot make the $\Delta S = 2$ transition. In any case this term also vanishes due to the factor q_{μ} . For the second term we make the plausible assumption that $\partial_{\mu}J_{\mu}$ transforms as a component of an octet; so that the equal-time commutator again cannot lead to the $\Delta S = 2$ transition between K^0 and \overline{K}^0 . Hence, these two terms will be dropped from further discussion.

The left-hand side of Eq. (4) vanishes for the case $J_{\mu} = A_{\mu}$ in the limit $q \rightarrow 0$, since no single-particle (scalar) state degenerate with the K^0 is available. Hence the limit of the first term on the right of Eq. (4) for $J_{\mu} = A_{\mu}$ vanishes:

$$\lim_{q \to 0} R_A(q) \equiv i \int d^4 x \langle K^0 | T([\partial_\mu A_\mu(x)][\partial_\nu A_\nu(0)]) | \overline{K}^0 \rangle$$

= 0. (5)

For the case where J_{μ} stands for the vector current density V_{μ} , since $\partial_{\mu}V_{\mu}$ is nonvanishing in the first order of the SU(3)-symmetry breaking, the first term on the right,

$$R_{V}(q) \equiv i \int d^{4}x \, e^{-iqx} \times \langle K^{0} | T([\partial_{\mu}V_{\mu}(x)][\partial_{\nu}V_{\nu}(0)]) | \overline{K}^{0} \rangle, \qquad (6)$$

is at least of the second order in the symmetry breaking. Hence, the term $q_{\mu}q_{\nu}M_{\mu\nu}$ must be evaluated to the same order. Since we eventually have to go to the limit $q \rightarrow 0$, we shall not discuss the multiparticle contributions. The single-particle-state contributions due to the π^0 and the η^0 must thus be calculated to the second order, and only at the end shall we go to the limit⁹ $q \rightarrow 0$. We then have

$$q_{\mu}q_{\nu}M_{\mu\nu} = \frac{1}{(2\pi)^{3}} \frac{1}{M_{K}} [F_{+}(\pi^{0} - K^{0})F_{+}(\overline{K}^{0} - \pi^{0})\{(M_{K}^{2} - M_{\pi}^{2}) + O((M_{K}^{2} - M_{\pi}^{2})^{2})f_{\pi}(q)\} + F_{+}(\eta^{0} - K^{0})F_{+}(\overline{K}^{0} - \eta^{0})\{(M_{K}^{2} - M_{\eta}^{2}) + O((M_{K}^{2} - M_{\eta}^{2})^{2})f_{\eta}(q)\}].$$
(7)

In Eq. (7), the F_+ stands for the usual form factors in the matrix elements of the vector current between the states indicated. Also $f_{\pi}(q)$ and $f_{\eta}(q)$ are some q-dependent functions, whose explicit forms are not relevant since they occur in terms of higher order in the SU(3)-symmetry breaking, and so must be taken as zero for consistency. Making use of the SU(3) values of the F_+ , we obtain

$$\lim_{q \to 0} q_{\mu} q_{\nu} M_{\mu\nu} = -\frac{1}{(2\pi)^3} \frac{1}{8M_K} (4M_K^2 - 3M_{\eta}^2 - M_{\pi}^2).$$
(8)

We thus obtain $R_V(0)$ in terms of deviations from Gell-Mann-Okubo mass formula

$$\lim_{q \to 0} R_V(q) = -\frac{1}{(2\pi)^3} \frac{1}{8M_K} (4M_K^2 - 3M_\eta^2 - M_\pi^2).$$
(9)

In the model^{5,6} where the interaction Hamiltonian density for nonleptonic decays is taken¹⁰ to be

$$H_{w}(x) = i\lambda \left[\partial_{\mu} (V_{\mu3}^{2} - V_{\mu2}^{3}) + \partial_{\mu} (A_{\mu3}^{2} - A_{\mu2}^{3})\right],$$

= $2\lambda \partial_{\mu} (\mathfrak{F}_{\mu,7} + \mathfrak{F}_{\mu,7}^{5}),$ (10)

we find directly, comparing Eqs. (2), (6), and (9), that

$$\Delta m = (\lambda^2 / 2M_K) (4M_K^2 - 3M_\eta^2 - M_\pi^2).$$
(11)

It should be noted that, as seen from Eq. (5), only the parity-conserving part of H_w gives a nonvanishing contribution to Δm . The parameter λ may be fixed from the $K_1^0 \rightarrow 2\pi$ decay rate,⁶ so that we have

$$(\Delta m)\tau(K_1^0) = \frac{16\pi}{3} \frac{f_\pi^2 M_K (4M_K^2 - 3M_\eta^2 - M_\pi^2)}{(M_K^2 - M_\pi^2)^2 (M_K^2 - 4M_\pi^2)^{1/2}}, \quad (12)$$

where f_{π} stands for the decay constant of the $\pi_{\mu 2}$ decay and has the value $f_{\pi} \simeq M_{\pi}$.

In the alternative model¹⁻⁴ of nonleptonic decays,

$$H_{w}(x) = g_{S} s_{7}^{5} + g_{P} s_{6}, \qquad (13)$$

where $\$_{7}^{5}$ is the seventh component of an octet of pseudoscalar densities transforming like $i\bar{q}\lambda_{i\gamma}5q$, and $\$_{6}$ is the sixth component of a similar octet of scalar densities. Using partially conserved axial-vector current in the form

$$\partial_{\mu} \mathcal{F}_{\mu,7}^{5} = -(f_{\pi}/\sqrt{2})M_{K}^{2}\varphi_{7},$$
 (14)

where

$$(M_{\pi}^{2} - \Box) \varphi_{7} = b S_{7}^{5}$$
 (15)

and b is a scale factor, we see from Eq. (2) that the contribution to Δm from the paritynonconserving part again vanishes. For the parity-conserving part, assuming that the SU(3) symmetry-breaking interaction transforms as s_8 (belonging to the same octet as s_6), we may write

$$\partial_{\mu} \mathfrak{F}_{\mu,7}(x) = i \delta m [\mathfrak{s}_8(x), F_7(x_0)] = \delta m \frac{\sqrt{3}}{2} \mathfrak{s}_6(x),$$
 (16)

where δm is the strength parameter for the mass-splitting interaction. Then we have

$$R_{V}(q) = i(\delta m)^{2} \frac{3}{4} \int d^{4}x \, e^{-iqx} \\ \times \langle K^{0} | T(s_{6}(x)s_{6}(0)) | \overline{K}^{0} \rangle.$$
(17)

Thus we have from Eq. (2)

$$\Delta m = -\frac{4}{3} \frac{g_P^2}{(\delta m)^2} (2\pi)^3 R_V(0).$$
 (18)

In this model the K_1^0 decay rate is given by²

$$\Gamma(K_1^{0}) = \frac{1}{32\pi} \frac{g_S^2}{(\delta m)^2} \frac{1}{f_\pi^2 M_K^2} (M_K^2 - M_\pi^2)^2 \times (M_K^2 - 4M_\pi^2)^{1/2}.$$
 (19)

From Eqs. (9), (18), and (19) we obtain again the result (12), assuming $g_S = g_P$, as suggested¹¹ by the calculations on the ratio of $(K - 3\pi)/(K - 2\pi)$.

We thus find that both the models lead to the identical expression¹² for $(\Delta m)\tau(K_1^0)$ as given in Eq. (12). Finally, we obtain the numerical result

$$\Delta m \tau (K_1^{0}) = 0.49. \tag{20}$$

We find that K_2^{0} is heavier than K_1^{0} in agreement with recent experimental measurements.¹³ The magnitude of the mass difference also is in good agreement with experiments.¹⁴

We would like to thank Professor R. E. Marshak for useful discussions. One of us (R) is also grateful to him for extending hospitality at the University of Rochester, where this work was carried out.

*Work supported in part by the U. S. Atomic Energy Commission.

¹M. K. Gaillard, Phys. Letters <u>20</u>, 533 (1966).

- ²Riazuddin and K. T. Mahanthappa, Phys. Rev. <u>147</u>, 972 (1966).
- ³C. G. Callan and S. B. Treiman, Phys. Rev. Letters <u>16</u>, 153 (1966).
- ⁴R. Gatto, M. Maiani, and G. Preparata, Nuovo Cimento <u>41</u>, 622 (1966).
- ⁵K. Nishijima and L. J. Swank, Phys. Rev. <u>146</u>, 1161 (1966).

⁶G. S. Guralnik, V. S. Mathur, and L. K. Pandit, Rochester Report No. UR-875-148, 1966 (unpublished).

⁷V. Barger and E. Kazes, Nuovo Cimento <u>28</u>, 394 (1963).

⁸This follows as an exact consequence if the SU(3) or $SU(3) \otimes SU(3)$ symmetries generated by the vector and axial-vector "charges" are broken by an octet-type splitting.

[†]On leave of absence from the Centre for Advanced Studies in Theoretical Physics and Astrophysics, University of Delhi, Delhi, India.

[‡]On leave of absence from the Tata Institute of Fundamental Research, Bombay, India.

⁹If we had first taken the limit $q \rightarrow 0$, the term $q_{\mu}q_{\nu}M_{\mu\nu}$ would have vanished and the single-particle contribution to $R_{V}(q)$ would then have given the first-order Gell-Mann-Okubo mass formula.

¹⁰We have chosen here equal strengths for the parityconserving and parity-nonconserving parts of the Hamiltonian, required by the calculations on the ratio $(K \rightarrow 3\pi)/(K \rightarrow 2\pi)$. For a detailed discussion on this point see G. S. Guralnik, V. S. Mathur, and L. K. Pandit, to be published.

 $^{11}\overline{\rm Y}.$ Hara and Y. Nambu, Phys. Rev. Letters <u>16</u>, 875 (1966).

¹²It is of interest to note that this formula, which here appears as an exact consequence, was previously derived in a pole model by Riazuddin, Fayyazuddin, and A. H. Zimmerman, Phys. Rev. <u>137</u>, B1556 (1965). See also A. H. Zimmerman, Riazuddin, and S. Okubo, Nuovo Cimento <u>34</u>, 1587 (1964).

¹³O. Piccioni, post deadline paper presented at The American Physical Society, Washington, D. C., 1966 (unpublished).

¹⁴See, for a recent review, M. L. Good, Argonne National Laboratory Report No. ANL-7130, 1965 (unpublished).

ERRATUM

EQUIVALENT REPRESENTATIONS IN SYM-METRIZED TENSORS. Donald R. Tompkins [Phys. Rev. Letters <u>16</u>, 1058 (1966); <u>17</u>, 622(E) (1966)].

In order to be general, Eq. (2) [hence, Eq. (5) also] must either contain modified idempotents $(PQ')_i^{\ \mu} \equiv (PQ)_i^{\ \mu} + (\text{additional terms}) \text{ or else}$ be replaced by

$$e = \sum_{i, \mu} (N^{\mu}/G)^{2} (PQ)_{i}^{\mu},$$

where the sum is over all tableaux of all patterns of s_r . The above equation displays a resolution into two-sided ideals rather than a Peirce resolution. Either alternative only adds terms to the special resolution given in the Letter; so the arguments and results are not changed. In Eqs. (6) replace

$$B_n^{\mu} \equiv (N^{\mu}/G)(PQ)_n^{\mu}S_n 2^T i_1 \cdots i_r$$

Nth basis $(n = N^{\mu})$:

by

$$B_n^{\mu} \equiv (N^{\mu}/G)(PQ)_n^{\mu} S_{n2}^{T} T_{i_1} \cdots T_{i_r}^{T}$$

*n*th basis $(n = N^{\mu})$:

and in Ref. 5 replace $(a, b, c) = (1, \dots, n)$ by $(a, b, c) = (1, \dots, m)$.