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The theory for space-charge-limited currents' '
in insulators and semiconductors can be extend-
ed rigorously to embrace the essentially time-
dependent cases and to include charge-carrier
diffusion. ' Dynamical and diffusion effects are
expected to be of practical importance in cer-
tain operating regimes for some thin nonmetal-
lic crystal elements, v and extraordinary tran-
sient voltage-current relations are predicted
for them by the theory outlines here.

With trapping negligible, the one-dimension-
al single-carrier current flow in an ideal non-
metallic solid is governed by the conduction-
continuity and Poisson equations'

(4) sa.tisfies Eq. (3) with

,'(vD-t) '"f exp(-(4Dt) '[(-x+(p/e, )f, (t-t')

x J(t')dt']'+ (p/2D)y, (]))d],
in which y, (x) -=y(x, 0) is the prescribed ini-
tial potential field. "

Of greater practical interest is a finite x do-
main 0 &x & L„appropriate to a thin insulating
crystal of length 1.. With an Ohmic injecting
contact at x =0, the boundary condition

fsy = 0 implying
II, Bx

s'y/sx' = —(q/e)n, (2)

= "fJ(t)dt
2eD 0

is a satisfactory approximation, " compatible
with a prescribed potential difference

(7)

for the potential field y = y(x, t) and carrier
concentration n =n(x, t) of particles with con-
stant drift mobility LL(. , effective charge q, and
diffusivity D in a medium of permittivity e;
by definition, p, and q have the same sign (mi-
nus for electrons, positive for holes) and the
Einstein relation takes the form D = paar'/q.
Combining Eqs. (1) and (2) and integra, ting twice
with respect to x, one obtains the inhomogeneous
nonlinear equation

Bp ~ Bcp B {p

'xJ

+ (trivial gauge function of t alone), (3)

where J = J(t) is the total Maxwell current (drift
plus diffusion plus displacement) per unit area.
Equation (3), an inhomogeneous Burgers equa-
tions for By/ax, can be integrated exactly;
it is satisfied by

(8)

with p. V&0 for t&0 that is established by an
external voltage source. Subject to a field-free
initial condition y(x, 0) =0 [requiring V(0) =0],
the space-charge-limited solution" to Eq. (5)
with (7) and (8) can be obtained by application
of well-known linear methods, although the
exact solution is not expressible in closed form.
However, an approximate version of the solu-
tion to Eq. (5) with (7) and (8), valid with good
accuracy provided that the applied voltage (8)
does not change too rapidly after an initial tran-
sient rise, i.e. , I Vl «

I g I
V'/L' for t 5 L'/p, v,

is given by

g = exp((p/2cD)xf J(t')dt'+ (2p J/e)'"x'"/3D)t

for 0&x &x,

= exp((p /2@ D)xf J(t )at + y. Vx/2D I,)
for J &x &I.,

y = -e x J(t')dt'+ in(—1 2D

0 /J.

with

J = qp, ev'/8L'X (lo)
if g (&0) satisfies the homogeneous linear equa-
tion

—+— J(t ')dt ' -D-Bg p, t 8 Bg
I; e 0 BX BX

Hence, in the case of an unbounded x domain,

and

x -=mi ((np/c) f (t t')J(t')dt'+ 2(Dt)'"—, I). (11)

A transient voltage-current relation follows
from (10) and (11), the current density deter-
mined implicity by the applied voltage; by in-
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troducing some obvious approximations, the
explicit dependence is found to take the approxi-
mate form

J= qpeV', /16L'(Dt)'" for 0 & t ~t„
—= qe V/8Lt for t,~ t ~ t„
—=

qadi. eV'/8L' for t, ~t, (12)

where the characteristic times are

t, —= 4DL'/y. 'V'—= 4(2.5 cm'/sec)(10 ' cm)'

x (10' cm'/V sec) '(10 V) '=10 ' sec,

t, = L /pV —= (10 ' cm)'/(102 cm'/V sec)(10 V)

=10 ' sec

for typical physical magnitudes. Hence, in the
case of an applied voltage that rapidly attains
a finite constant value in a time of the order
t„ the associated current density increases
in magnitude from J(0) = 0~3 to a maximum val-
ue about equal to J(t,) —= qe p'V'/32DL, ' (-=+1 A/
cm', for typical physical magnitudes) and then
decreases in magnitude asymptotically to the
steady or quasisteady value' J(t,) = qp, e V'/8I. '
(—=+10 ' A/cm', again for typical physical mag-
nitudes). The very large diffusion-dominated
transient current density, two orders of mag-
nitude greater than the steady space-charge-
limited value for J, should be observable with
fast electronic circuitry and near-perfect in-
sulating crystals substantially free of large-
cross-section traps.
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In the case of an ineffective Ohmic contact that fails to
provide a free supply of charge carriers for the conduc-
tion band of the insulating crystal, the latter solution
supersedes (9).

3For the D=O idealization, (10) and {11)produce J(0)
= Be V(0)/2L, a condenser-type~2 voltage-current rela-
tion. Naturally, the D =0 theory5 cannot predict the
large diffusion-dominated transient current density.

passive role (subordinate to charge-carrier drift) for
the steady currents, & it is necessary to include diffu-
sion in a rigorous dynamical theory for space-charge-
limited currents. The D = 0 idealization5 is a singular
limiting case for the dynamical theory, Eq. (3) being
parabolic with t = const characteristics for positive
(physical) D but hyperbolic with charge-carrier flow-
line characteristics for the academic D = 0. Moreover,
subject to an Ohmic injecting-contact boundary condi-
tion (7), the diffusion governs the flow of charge car-
riers for small x with the drift current vanishing at
the contact. Thus, the usefulness of a D=0 theory is
quite limited, the actual smallness of physical D not-
withstanding.
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x—A, +y, '(A))lt fp/e) (t —t')J(t')dt' —= 0.
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~2The macroscopic theory also admits the "condenser"
solution to Zq. (5) with (7} and {8), approximately of
the form

(t = 2 [1+exp((p/eD)x J Z(t')dt'j]

with


