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THEORY OF ENHANCED RAMAN SCATTERING AND VIRTUAL QUASIPARTICLES IN CRYSTALS*
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The purpose of this paper is to provide an explanation for the enhanced Raman-scat-
tering cross sections in CdS recently reported by Leite and Porto and to point out the
likely generality of the phenomon involved.

We have reformulated the theory of the first-
order Raman scattering in crystals. In the
existing theory of Loudon, ' the intermediate
states are the free electron and hole Bloch func-
tions. In our theory, we use the exciton rep-
resentation, where the electron-hole Coulomb
interaction is always present. This will be
relevant to explain the enhanced Raman scat-
tering recently reported by Leite and Porto. '

The total Hamiltonian of the system can be
taken as
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of the destruction and creation operators for
exciton, phonon, and photon. Xer("(Xep(")
is the exciton-radiation (exciton-phonon) inter-
action term, which is linear in both exciton
and Photon (Phonon) oPerators. Xer"'(Xep"')
is the interaction term, which is bilinear in
exciton operator but linear in photon (phonon)
operator s. Deformation potential approxima-
tion is used for Xep. The coupling parameters
for the various interactions are obtained by
a procedure similar to that of Toyozawa. '

We now make a canonical transformation of
the total Hamiltonian such that the terms lin-
ear in exciton operators are eliminated. The
transformed Hamiltonian X is
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+exciton~ +phonon~ and %radiation are the un-
coupled exciton, phonon, and photon Hamilto-
nians. We use the formalism of second quan-
tization, and the Hamiltonian is written in terms
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where S is chosen such that
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First-order Raman effect occurs due to the terms in the commutator' [S, [S,X"']].
The initial state of the system will be specified by I i) = Ini, nsnp; 0), where ni, ns, and np are the

numbers of the incident photons, the scattered photons, and phonons. The zero in the ket refers to
the ground electronic state, where no excitons are present. The final state after Raman scattering
will be lf)= Ini-I;ns+ 1;np+ 1; 0). Since we consider spontaneous Raman scattering, ns will be tak-
en to be zero. The transition probability per unit time from the initial to the final state in the case
of nonpolar optic vibration is
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Using the explicit forms of S and K'", we finally get
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where a, is the lattice constant, V the volume of the crystal, v the dielectric constant, and% the
number of unit cells. 1/M= 1/M, + 1/M„where M, and M, are the masses of the two sublattices;
g, y., Xs are the wave vectors of phonon, the incident photon, and the scattered photon respectively;
and &u0, (oi, &u&, and ei, es, $0 are the corresponding frequencies and unit polarization vectors, re-
spectively. Ris ~ in Eq. (6) is the Raman tensor which is given by
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+ five other terms ~, (7)

where Uev~K and E~K(c, v) are the wave function and the energy, respectively, of the exciton with
inner quantum number X and wave vector K. The conduction and the valence bands are denoted by
c and v, and qe and qh are given by

i(K-K) P'.=~t U-~K"".' ~ K'"' 'h =~t U-~K*" '."~ K ".

When c=c', v=v', and K-K'-0, it can be shown that qe=qh= l. In Eq. (7), y;, ys, and jwill be as-
sumed to be zero, which is a good approximation for first-order Raman effect. Further, the wave-
vector dependence of the matrix elements of the deformation potential (Bir and Pikus') D(J) and 7 p
are neglected. We have shown only the dominant term in the expression for R~

We calculate Ris (~) approximately for a. two-band model involving the highest valence band and the
lowest conduction band. Assume that the bands are parabolic. %e may then use hydrogenic wave
functions and eignevalues for U and F. . Thus we obtain
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where A&g is the band gap. R, p, , and a are the Rydberg exciton, effective exciton mass, and exci-
ton Bohr radius for n = 1. The first term inside the curly bracket in Eq. (9) arises from the discrete
exciton states and the second term from the continuum.

Two limiting cases may now be considered: (i) When bring-8'uri» 2', we get
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where the matrix elements are written in Loudon's' notation. In this limit the first term is small
compared with the second, and we obtain Loudon's result.

(ii) h~& —h~i —R. In this limit all terms in Eq. (9) are finite, except the term with n = 1 (in the sum-
mation), and R~(~) diverges as
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which agrees with the result of Grecho and Ovander without damping, but does not agree with I,ou-
don's result.

For transverse polar optic vibration, the Raman tensor is the same as in Eq. (7), but for longitu-
dinal polar optic vibration, there is an additional contribution to the Haman tensor due to the asso-
ciated. electric field. This can be accounted for by using Frohlich interaction for llep. The transi-
tion probability per unit time due to this term alone is found to be
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where

P. = ) terms similar to that of Eq. (7) in which (nID ln') is replaced by
(i) (niq pin )

E E
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Here Kp is the static dielectric constant,
is a unit vector in the direction of q, and Q
means that the term with c= c', v =v' simulta-
neously is omitted. So we cannot make a sim-
ple two-band calculation for P~". However,
near resonance, Pis" will diverge as (e&-R/8'
-oui) ' in disagreement with both Ovander and
Grechko, who predict a (~g-~i) ' divergence,
and Loudon, who predicts a (v&-&ui)'~2 behav-
ior .

Equation (11) explains the experimental re-
sults of I,cite and Porto' on Cds. The value
of 2.521 eV at 77 K that they obtained for the
intermediate state should correspond to the
intermediate exciton state according to our
theory. Thomas, Hopf ield, and Powell' obtained
a value of 2.544 eV at 77 K for the exciton states
in Cds from absorption experiments. The dis-
crepancy between the two values suggests that
the intermediate state involved in Raman scat-
tering in Cds may not be simple exciton states,
but some other elementary excitation such as
coupled exciton phonon. Investigation along
that line is proceeding.

We have also calculated the variation of the
intensity of the scattered radiation from Cds
when the incident energy of the photons is in-
creased from 2.41 to 2.53 eV. We find that
the intensity increases by a factor of 10', where-
as according to Loudon's theory the intensity
increases by a factor of 4. I„cite and Porto'
report an appreciable increase in intensity
("at least one order of magnitude" ). Accurate
measurements of scattered intensity for var-
ious frequencies near resonance and for dif-
ferent materials are necessary to decide the

correct theory. We are applying our theory
to other materials such as GaAs, Ge, etc. ,
for which no experimental results have yet been
reported.

We believe that the enhanced Raman scatter-
ing near resonance will provide a means of
obtaining information about the intermediate
quasiparticle states involved in the Raman scat-
tering and the coupling among and between these
states (e.g. , electron-phonon, exciton-phonon,
etc. ). The details of our calculations will soon
be sent for publication.

*This work supported in part by the Aerospace Re-
search Laboratories, Office of Aerospace Research,
Wright-Patterson Air Force Base, Ohio, under Con-
tract No. AF(33)(615)-1746 and the U. S. Army Re-
search Office (Durham) under Grant No. DA-ARO-D-
31-124-G792.

R. Loudon, Proc. Roy. Soc. (London) A275, 218
(1963).

R. C. Leite and S. P. S. Porto, Phys. Rev. Letters
17, 10 (1966).

3Y. Toyozawa, Progr. Theoet. Phys. (Kyoto) 20, 53
(1958).

4The formalism was first presented for Baman scat-
tering by one of us at the International Conference on
Scattering Spectra in Solids, Paris, July 1965: J. L.
Birman, J. Phys. Radium 26, 735 (1965).

5G. L. Bir and G. E. Pikus, Fiz. Tverd. Tela 2,
2287 (1960) ttranslation: Soviet Phys. —Solid State 2,
2039 (1961)].

L. G. Grechko and L. N. Ovander, Fix. i'verd. Tela
4, 157 (1962) [translation: Soviet Phys. —Solid State 4,
112 (1962)j.

~H. Frohlich, Advances in Physics 3, 325 (1954).
D. G. Thomas, J. J. Hopfield, and M. Power, Phys.

Rev. 119, 570 (1960).


