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—f[( ~+*)x'—x+*( x')]K +H. c (3')

whose matrix element is identical with the first of
Eq. (24) in Ref. 2. Although the small ~+-7t mass dif-
ference gives a nonvanishing contribution from (3'), it
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is better to keep the direct term gvr+*x K++ H.c., in
addition to (3).

According to the second of Eqs. (24) in Ref. 2, the
deviation of the extrapolated K& amplitude from the
physical one is less than -8%.
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This was also pointed out by S. Oneda, Y. S. Kim,
and D. Korff, Phys. Rev. 136, B1064 (1964). The con-
clusion remains the same, even if the 7t+-m mass dif-
ference is taken into account. The mass difference
gives only the renormalization of the nonderivative cou-
pling constant.

~~This result remains unchanged, even if we consider
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The current commutation relations~ and partially conserved axial-vector current
(PCAC) assumption2'3 allow the calculation of the matrix elements for emission and ab-
sorption of any number of soft pions and, therefore, in particular, determine the scat-
tering length of a pion on any target particle. In this note we give a simple formula for
pion scattering on any particle but a pion, and then extend this result to the more diffi-
cult case of pion-pion scattering.

Calculations of soft-pion matrix elements may be conveniently performed in three distinct steps:
Step I.—The S matrix is extended off the mass shell, using a pion field defined as proportional to

the divergence of the axial-vector current. In our case we define the off-mass-shell invariant pion
scattering amplitude (f, qb IM Ii, ka) by

fd xd y(f!T{8 A (x), 8 .A (y))li)e e = », 2 a, ,s, ,»(f, qblM li, ka),
p. b ' i a

where kl" and q~ are the initial and final pion momenta, a and 5 are the initial and final pion isovec-
tor indices (running over l, 2, 3), i and f label the initial and final states of the target particle, Aa&(x)
is the axial-vector current, and F„ is the pion-decay amplitude, defined by

(Oi 8 A (0)lw ) =F m 8 (2q ) '(2w)
v 2 0 ——,

' ——', . (2)
v a qb m 7t ab
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Note that Eq. (1) is a definition, not a theorem
or an assumption, but that the Lehmann-Sy-
monzik-Zimmerman (LSZ) formalisme shows
rigorously (and without invoking PCAC) that
the S matrix is given in terms of M on the mass
shell, by

(f,qblSli, ka)

—i(2m) 6 (p. +k —p —q)
'L f

(2m) (16q k E.E )

x [(f,qb IM I i, ka)],

where M'o' is an unknown constant proportional
to (f I oab(0) I i), with pf =p. =p, and T and Tt
are the pion and target isospin matrices, with

(T~c)ba =i&abc .The "poles" in Eq. (6) are
to be evaluated from the Born terms in gradi-
ent coupling theory; for instance, there are
no poles in m-m, m-K, or m-A scattering, while
for m Nsc-attering the pole terms in Eq. (6)
are

( Al ("poles"= I I IM [y g( i@+-m )y P'v T

+y P(—iP'+m )y gv T Ju..a b i
(7)

Step II.—The current commutation relations
are used to prove an exact theorem about the
behavior of the matrix element in the limit
of vanishing pion four-momenta. In our case
it is convenient to fix PiI" =P&, and let q& and
kl" go to zero together, so that pf& -p&. [Since

pf = -m~', we must require that p k =p.q to
first order, but we do not necessarily take
q& =k~.] The commutation rules used here
are those suggested by the v model ~' and the
free-quark model:

x (-b(x -y )(fI[A (x), 8 A (y)]li)

-iq 6(x -y )(fI[A (y), A (x)]li)
0 0 0 p,

a ' b

+q k (fIT(A (x),A (y)]li)). (8)

The proof follows standard lines. The left-hand
side of Eq. (1) is identically equal to

4 4 iky -iqx
d xd

b(x —y )[A (y), A (x)]

=2ig ~ V (x)6 (x-y)+S.T.,
p, 4

v abc c

6(x -y )[Ab (x), &,A (y)l

=ig o (x)6 (x-y)+ S.T.,V ab (5)

(f, qb IM I i, ka)

'"- (gv/ „)'(P.q)( )b ( i),.fb, ia

+ poles+0(qq, qk, kk),

where Vc&(x) is the vector current, oab(x) is
some scalar field which may or may not have
something to do with a real 0+ m-m resonance
or enhancement, and "S.T."means possible
Schminger terms. It will be assumed that the
Schwinger terms are either c numbers, which
do not contribute at all to the connected part
of M, or, if operators, involve gradients which
kill their contribution to first order in q and
k. Our theorem states that, as q~ and k~ van-
ish, the connected part of M approaches

Using Eqs. (4) and (5) and the known matrix
elements of Vc&(x) at zero momentum trans-
fer, the three terms of Eq. (8) yield, respec-
tively, the first three therms of Eq. (6). Note
that the first term of Eq. (8) does not produce
an additional first-order term in Eq. (6), be-
cause Eq. (5) shows that it depends only upon

p (q-k) and (q-k)', and p. (q-k)=0. The pole
terms may be identified as the total first-or-
der contribution of the last term in Eq. (8).

Step III.—The exact theorem proved in Step II
is used to estimate the matrix element on the
mass shell. It is here that we must for the
first time invoke PCAC, by which we mean
that the M defined in Step I is as smooth a func-
tion of qW and k~ as mould be expected in a
perturbation expansion, based on a Lagrangian
field theory in which 8&Aa& (x) is proportion-
al to the pion field. [The statement, that
&&Aa&(x) is proportional to the pion field, is
by itself empty. ] In our present context we
will interpret this rather Delphic hypothesis
as meaning that, if the pole terms in Eq. (6)
are understood to include the poles near q =k
=0 (such as the 3-3 resonance in 7T Nscatter--
ing) as well as those actually at q =k=0 (such
as the N pole itself), then the coefficients of

617



VOLUME 17, NUMBER 11 PHYSICAL REVIEW LEYTERS 12 SEPTEMBER 1966

(f, qf ISli, ka)
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x (-p'q/m m )6~(p. + k-p -q).t i f

the remaining quadratic terms in Eq. (6) are
of order G /mi2, where m is some large in-
ternal mass, assumed to be of order mN. There-
fore, when the components of q& and k" in the
rest frame of pP are of order m~, the quadrat-
ic terms in Eq. (6) are of order G&2mz'/mi',
while the Goldberger- Treiman relation shows
that the linear terms are of order Gz m~mf/
mN', where mt is the mass of the target par-
ticle. Therefore, if the target mass is much
larger than the pion mass, we may get a good
approximation to the soft-pion S-matrix element
by using Eq. (6) with quadratic and higher terms
omitted. We can offer three arguments for
also omitting the M 0' term:

(1) The Adler self-consistency argument8
shows that M must vanish, except for poles,
when q~ =0 and k'=-m '. Thus M'" must be
of the same order as the quadratic terms as
this point, i.e. , of order G~'m„'/mi2, and is
hence negligible. [This argument can be made
more explicit by rearranging Eq. (8) to sepa-
rate the one- and two-pion pole contributions
to the last term, as was done in Ref. 4. We
then find for M an expression like Eq. (6), but
with M" multiplied by a factor (q'+k +m ')/
mz'. The vanishing of this term at qI" =0, k'
= -mz' is now automatic, and we see directly
that if M'" were large, it would contribute to
M a rapidly varying function of qI" and k", in
contradiction to the spirit of PCAC. ]'

(2) In the o model, ' M'0' is of order G~'m~'/
ma, this may be neglected if m z/mf «(mo/
m~)'.

(3) The method of Ref. 4 can be used to show
that, if mz—- 0 and 8&A&~ -—0, then M obeys
the limiting formula (6), but the M +' absent.
Hence M"' may be regarded as arising only
from the nonvanishing of the internal pion mass-
es.

We still have the poles to consider, but these
are generally absent in the s-wave part of the
scattering amplitude. (This is true, for exam-
ple, of the nucleon and 3-3 resonance poles in
m'-N scattering, the K poles in m-K scatter-
ing, etc. ) Hence the E = 0 part of the S matrix
is given near threshold by just keeping the p q
term in Eq. (6), i.e. ,

where Tt is the target isospin, T is the total
isospin, and L is a convenient length, given
by the Goldberger- Treiman relation as

g 'm G'm )gL-=-,=,I I =O. llm
2m' ' 8mm ' (g

(10)

The reduced-mass correction (1+m~/mf)
in Eq. (9) might well be omitted within the spir-
it of our approximations, but we keep it because
it clearly arises from the definition of aT.

For w-N scattering Eq. (9) gives

a
/

=2L(1+m /m ) '=0.20m

a =-L(1+m /m ) '=-0.10m
3 2 m N

'
m

results which compare very well with the ex-
perimental values" al/2m~ =0.171+0.005 and

a3/2m~ = -0.088 + 0.004. Using the prediction
that al/2-a3/2 =3L(1+ m~ /m~) ', together
with the Goldberger-Miyazawa-Oehme sum
rule" for a», -a„„we can obtain for (g&/g&)
a sum rule, which differs from that of Adler
and Weisberger' only in terms of order m~ /
mN, however, the sum rule is true only if
the odd part of the forward scattering ampli-
tude obeys an unsubtracted dispersion relation,
while the derivation of the scattering lengths
(11) made no assumption about the high-ener-
gy limit of any amplitude. The prediction that
a„,+2a„, is 0 may be regarded as a threshold
version of Adler's self-consistency condition,
since we can easily see that if M' ' were non-
negligible, ay/2+ 2Q3/2 would be proportional
to M' '. In whatever form we choose to write
the predictions (ll), their success probably
rules out the presence of any strong low-ener-
gy v-n interaction, for our derivation would
have failed if M contained a strong singularity
in the t channel at a mass near 2m~.

Equation (9) can also be used to calculate
m-K and v-hyperon scattering lengths, but none
of these have been measured yet. A few pion-
nuclear scattering lengths have been measured'3
and do not compare well with Eq. (9), but this
is presumably because 140 MeV is such a high
excitation energy for nuclei that we cannot re-
gard a pion at threshold as soft; in particular,

The scattering length a7 is defined as -2im
times the reduced mass times the coefficient
of the 6 function in 8 at threshold, so'

a = —L(1+m /m ) '[T(T+ I)—T (T +1)—2], (9)T 7T t t t
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Eq. (9) is real, while in fact pion annihilation
makes aT complex. This point is under further
study.

We derived Eq. (9) under the assumption that
the target is much heavier than a pion, so Eq. (9)
cannot be used for pion-pion scattering. For
instance, Eq. (9) gives a nonvanishing scatter-
ing length for T=1, in contradiction with Bose
statistics. In order to calculate the 7T-7T scat-
tering lengths we will have to keep track of
M' ' and the qq, qk, and kk terms, because at
threshold they are here just as large as the
pq term.

First note that crossing symmetry, isospin
conservation, and Bose statistics require that
the expansion of the off-mass-shell 7T-7T scat-
tering amplitude to second order in momenta
takes the form'4

(ld, qb IM Ipc, ka)

=5 5 [A+B(s+u)+Ct+ ~ ~ ~ ]ab cd

approaches

(ld, qb IM Ipc, ka)

&-8(g /F )'(p q)db, ca t/'

x(5 5 -5 5 ).
da bc bd ac' (15)

(There are no poles here. ) In this limit t =0,
s-m~ -2p ~ q, and u-m» +2p q, so compar-
ing Eq. (15) with Eq. (12) gives

B C-=4(g /F ), (16)

From Eqs. (13), (14), (16), and (10), we find"

db, ca

=5 5 [A+2m 'B]
ab cd 7T

+(5 5 +5 5 )[A+m 'C+m B]. (17)
ad bc bd ac 7T 7T

+5 6 [A+B(s+t)+Cu+ ~ ~ ~ ]ad cb

+5 6 [A+B(u+t)+Cs+ ~ ~ ~ ],ac bd
(12)

2a -5a = 6L = 0.69m
0 2

'
7T

(18)

where

s = -(p+k)', t = -(k-q)', u -=--(p-q)'.

Also A, B, and C are constant coefficients,
and "+ ~ ~ "denotes terms of fourth and high-
er order in the pion four-momenta, p, k, l, and

q. The crucial point about Eq. (12) is that there
is no way that M can contain terms linear in
the masses -p', -l', -q', -k', aside from the
terms proportional to s, t, and u.

The PCAC assumption says that if M is de-
fined in analogy with Eq. (1) as proportional
to the Fourier transform of the vacuum expec-
tation value of the time-ordered product of four
axial-vector divergences, then the quartic and

higher order terms in M are small when p&,
3 J", k ~, and q~ are of order m7T or less. The
physical threshold is at s = 4m ~', t = u = 0, so
that 7T-7T scattering lengths are

The Adler self-consistency argument' shows
that M vanishes when any one of the four pion
momenta vanish and the other three are on the
mass shell, i.e., M=0 when s =t=u=m~', so

A =-m '(2B+C). (19)

A = -m (8+C).
7T

(20)

From Eqs. (19) and (20) we have then

B=O A =-m C
7T

(21)

which, with Eqs. (13) and (14), yields

In order to use this result to get another rela-
tion for the scattering lengths, it is necessary
to add a little new physical information. If we
assume that 8&Aa~ is part of a chiral quadru-
plet along with an isoscalar field (as in the c
model or the free-quark model), then Eq. (5),
and hence Mdb ca'' is proportional to 6ba, so
Eq. (17) gives

a = -(1/32@m )[5A+Sm B+12m C], (13)
ao/a, = —q.7 (22)

a =-(1/327&'m )[2A+8m B].
2 7T 7T

Combining Eqs. (18) and (22), we find
14)

Equation (6) shows that when p &" = l l" is on the
mass shell and q~=k&-0, the matrix element

a =(7/4)L =0.20m ', a2 =- ', L =-0.06m ~, (23—)

and the full low-energy 7T-7T matrix element
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1s

(ld, qb I M !Pc,ka)

+[m '-u]5 l5 +[m ' —sj5 & ). (24)adbc n ac bd

have a large effect on the process 7t +N - 2m ++
at threshold, where all three pions are soft.
A calculation of this process is now under way,
in conjunction with Chang.

I am very grateful for valuable discussions
with K. Bardakci, D. Caldwell, G. F. Chew,
S. Mandelstam, and S. B. Treiman.

The striking feature of our result (23) is,
of course, that ao is predicted to be very much
smaller than anyone had thought. It seems ap-
propriate, therefore, to close with some re-
marks about the theoretical and experimental
plausibility of this result:

(1) In the o model the Xy~ term plus the three
one-o-exchange graphs gives scattering lengths
which agree precisely with Eq. (23) in the lim-
it m~'»m~', except that L is given in terms
of unrenormalized coupling constants.

(2) If the odd part of the forward v-v scatter-
ing amplitude obeys an unsubtracted dispersion
relation, then our prediction (18) of 2ao —5a,
may be used to derive the Adler sum rule~6 for
w-v scattering total cross sections. (We have
already made the corresponding remark for
v-N scattering, that our prediction for a», -a»,
is essentially equivalent to the Adler-Weisberg-
er relation. ) This sum rule seems to require
either that ao be large, or that there exist a
strong ~-~ resonance. The v model provides
one example where it is a resonance (of arbi-
trary mass) rather than a large scattering length,
that saturates the sum rule.

(3) We have already remarked that the suc-
cess of our prediction (11) of the v Nscatte-r-
ing lengths (in particular, the prediction a„2
+2as, 2 =0) would be difficult to understand, if
there were any strong low energy 7t -~ interac-
tion. In the same way, the success of a recent
calculation" of the two Ke4 form factors pro-
vides further experimental evidence that the
~-v scattering lengths are quite small.

(4) Experiments on 7 and q decay and high-
energy "peripheral" two-pion production are
ambiguous, since it is not clear whether the
effects seen have anything to do with a 7t-v in-
teraction. Furthermore, the two-pion produc-
tion, even if peripheral, measures the n-v am-
plitude with one pion off the mass shell, and
the conditions (19) or (20) show that this has
a very large effect on M. It would seem desir-
able to reanalyze these experiments, using
formulas (12) or (24) for the off-mass-shell
v-7t amplitude.

(5) A strong low-energy w-v interaction would
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