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Recent experimental and theoretical work
indicates that the Regge-pole theory is impor-
tant in the description of high-energy mN back-
ward scattering. ' However, the question
of whether the Regge asymptotic form s~( )

holds in the backward region has never been
settled because there is a cone about the back-
ward direction in which cos0~ does not become
large with increasing s. And there seems
to be general uneasiness5~6 in applying the
Regge asymptotic form in this region.

We have studied and resolved this kinemat-
ic ambiguity of the Regge representation, and
in this note outline our argument and discuss
some very interesting features of the unequal-
mass scattering problem and of the Regge-pole
theory in general, which our investigations
have revealed. In brief, we find that the Regge
form so (u) does hold throughout the backward
region, but in order to cancel singularities
which would otherwise appear at u =0, Regge
trajectories must exist in families whose u
=0 intercepts differ by integers. We discuss
some experimental implication of this idea.
Further, we are able to characterize the be-
havior of partial-wave amplitudes a(u, l) at
u =0 and find results in contradiction with those
commonly believed. A more detailed paper
on this subject will be published elsewhere. '

Usual discussions' of the asymptotic behav-
ior in the backward region are based on the
application of the Sommerfeld-Watson trans-
formation to expansions of the scattering am-
plitude in partial waves in the u channel. The
high-energy limit is introduced through the
variable

2[m-(m'- p')'1
z = cos8 = — 1+-

2u u u 2u(m' —p')+ (m —p, )

This variable is bounded by unity for all s in
the backward cone defined by 0 ~u~

ural = (m'
-pP)'s ', and, since zu does not become large
with increasing s, the conventional Regge rep-
resentation (i.e. , the Sommerfeld-Watson trans-
formed partial-wave expansion) does not fur-
nish an asymptotic limit in this region. Indeed
any representation A(u, s) =g(u, zu) of the scat-
tering amplitude is suspicious at u =. 0 because
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where the sum is over the finite number of
Regge trajectories to the right of background.

The amplitude A(u, t) is in a disk of radius
to =4p. about the origin in the t plane. We can
express it as a power series

V
A(u, t) = Q b(u, v)t

v=0

with coefficients

b(u, v) =m f dt A (u, t)t
0

(4)

where At(u, t) is the spectral function in the mo-
mentum-transfer dispersion relation. Actu-
ally, the integral defining b(u, v) converges
only for Rev &N, where N is the number of
subtractions necessary in the dispersion rela-
tion, and must be defined by analytic continua-
tion to the left of this line. For Rev&N, b(u, v)

the transformation of variables is singular there.
Our method is based on work of Khuri' who

shows that Sommerfeld-Watson transformations
and Regge analysis can be applied to represen-
tations other than partial-wave expansions.
Starting from a power series. in the momentum
transfer t, we establish a representation which
explicitly exhibits Regge behavior throughout
the backward region.

In our notation u is always the Regge-pole
channel. For mathematical simplicity we treat
the case of two spinless particles with masses
m and p, , p, &rn, and assume that the third-
channel spectral function A~(u, s) =—0. The more
realistic case A.~ c0 is fully treated in Ref. 8.
The method can also be generalized to include
spin and definitely applies to mN scattering.

We assume that the ordinary partial-wave
amplitudes a(u, l) are meromorphic in the half-
plane Rel & -2, so that a Regge representation
can be written for the scattering amplitude
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is analytic in v and has only the physica, l cut
in u.

The Regge representation is valid for u g0,
and we use it to compute A.t and in this way
determine the continuation of b(u, v) to the left
of Rev=N:

A (u, t) =D(u, t)

+p p. (u)[2n. (u)+ 1]P (1+k/2q2). (5)
2 2 2 nf zc

resentation rather than as a defect of the Khuri
amplitudes. Therefore, we assume that the
Khuri amplitudes b(u, v) as defined by (4) can
be continued to u =0 and have no singularities
for Rev &-2 other than those given by the finite
number of moving poles in (7). Although not
proven, such behavior is suggested by the maxi-
mal-analyticity concept.

Next we make a Sommerfeld-Watson trans-
formation of the power series (5) obtaining

D(u, t) is the discontinuity of the Regge back-
ground integral and is of order 0(t '~) for u

c0. Its contribution to b(u, v) through (4) is,
therefore, analytic in Rev & -2.

The contribution of the Regge-pole terms
can be found from the integrals

f dt t P (1+t/2q').
0 n zl

(6)
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The function b(&, v) is regular in Rev&-2, and
the argument u of the trajectory and residue
functions has been omitted. P(u) is the reduced
Regge residue function defined by p(u) =q n( )

&& p(u). Only the residues of the principal and
first Khuri satellite poles have been written
explicitly in (7). The significant property is
that the residue of the jth satellite pole has
a factor of (2q2)n which has poles of order up
to j atm =0.

For Rev & N the analyticity of b(M, v) at u =0
cannot be inferred rigorously either from the
defining integral (4), which diverges, or from
the Regge representation, since the latter fails
to furnish the asymptotic behavior of D~(0, t).
It seems impossible to avoid this difficulty,
which we regard as a failure of the Regge rep-

Khuri has shown that (6) is regular for Rev
& ——,

' except for simple poles at v= n(M), n(&)
-1, ~ ~ ~, n(u) —n, where 2 &Ren(u)-n& —2. ThusI 1

the image of a single Regge pole is a principal
Khuri pole at v = n (u) plus satellite poles dis-
placed to the left by integers. The residues
of the Khuri poles have been computed in Refs.
8 and 9. We can write for b(u, v) the represen-
tation

(8)

The background integral' defines a function
with cut-plane analyticity in u and asymptotic
form 0(t "'). Each square bracket in (8) gives
the contributions of the principal and satellite
Khuri poles coming from a single Regge pole,
and coincides with the first nz terms of the as-
ymptotic series of (2q2)nPn(-z).

We consider the analyticity properties of the
pole terms in Eq. (8) at u =0. It is shown in
Ref. 8 that the reduced residues P(u) have no
cut in the vicinity of u =0 but may have poles
there because of the unequal-mass kinematics.
The contribution of each principal Khuri pole
has the same analyticity at u =0 as the reduced
residue of the Regge pole to which it corresponds,
and the jth satellite contribution has an addi-
tional singular polynomial of order j in u
The sum of the finite number of Khuri-pole
contributions must be analytic at u =0, and this
can occur only if the singularities of the indi-
vidual contributions cancel because of coopera-
tion among the Regge trajectories.

Let n, (u) be the leading Regge trajectory near
u =0. Its reduced residue P, (u) must be ana-
lytic at u =0, since a singularity there could
not otherwise be cancelled. Then the first Khuri
satellite contribution has a pole at u =0. To
cancel this pole there must be another Regge
trajectory n, (u) satisfying n, (0) = no(0)-1, which
we call the first daughter trajectory. Its re-
duced residue P, (u) has a pole at u =0, fixed
so that the singular part of its principal Khuri
contribution exactly cancels that of the first
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Khuri satellite of the leading parent Regge pole. "
In general, there will be a series of daugh-

ter trajectories nk(u) in the l plane satisfying

n (0)=n (0)-k k=1 ~ ~ ~ n
0 7

2 &Ren (0)-n& —2.
0

The corresponding reduced residues pk(u) will
have poles of order k at u =0, with everything
arranged so that singularities of the individual
Khuri-pole contributions cancel among them-
selves upon summation. Such a mechanism
for the cancellation of singularities may seem
miraculous, but it is a rigorous consequence
of the assumed analytic behavior of b(u, v) at
u =0.

When the spectral function Az is included,
we find that the daughter trajectories alternate
in signature, the first daughter having signa-
ture opposite to the parent. This means that
the first daughter trajectory to the Pomeran-
chuk trajectory is unphysical at t =0 and does
not correspond to a zero-mass scalar meson.

To obtain additional support for the daugh-
ter-trajectory hypothesis we have examined
Bethe-Salpeter models, and find that the hy-
pothesis is satisfied there for any Bethe-Sal-
peter kernel which Reggeizes in the first place.
The invariance group of Bethe-Salpeter equa-
tions for nonzero total energy is the group O(3)
of three-dimensional rotations leaving the to-
tal energy-momentum four-vector fixed. For
zero total energy (i.e. , u =0) this four-vector
vanishes, and the equation becomes invariant
to four-dimensional transformations of its in-
tegration variables. This extra degree of in-
variance at & =0 ensures the existence of daugh-
ter trajectories" (even for equal-mass kine-
matics) in much the same way that the extra
degree of invariance which sets in as the range
of a Yukawa potential becomes infinite ensures
the Coulomb degeneracy of bound states. The
symmetry property is independent of the lad-
der approximation and follows from the Lorentz
invariance of general Bethe-Salpeter kernels.
In Ref. 8 we show explicitly that the reduced
residue of the first daughter trajectory has
a pole at u =0 with exactly the residue neces-
sary to cancel the singularity in the first Khuri
satellite contribution of the parent Regge tra-
jectory.

Our work suggests that each of the presently
known particle trajectories is the parent tra-

jectory to a family of daughters of the same
internal quantum numbers but of alternating
signature with zero-energy intercepts spaced
by integers. We discuss first daughter trajec-
tories here, which have the property that if
J is a, physically realizable J' state of the
parent, then (J—l)+ is a physically realizable
state of the daughter.

Baryon daughters would best be detected in
high-energy backward meson-baryon scatter-
ing. The Khuri representation (8) gives the
correct asymptotic term to be used in fitting
such experiments. The leading term sn(u) is
exactly what would come from the Legendre
function of the Regge representation. However,
if one wishes to include any terms of order
sn(") l, one should include the contribution
of the first daughter trajectory. A Taylor ex-
pansion about u =0 should be used so that can-
cellation of singularities there is made mani-
fest.

The first daughter of the Pomeranchuk tra-
jectory, npl (t) [or the P' daughter n pt] (t)],
has B= Y = T = 0, 6 =+1, and odd signature. The
p daughter npl(t) has B = Y= 0, T = 1, G =+1,
and even signature. Consideration of quantum
numbers reveals that neither trajectory ean
couple to the two-body channels m7t, KK, or
NN, and neither would be observed in common
scattering or reaction processes. These tra-
jectories do couple to unequal-mass channels
@nd could, in principle, be observed in double
production processes such as N+ N-N~~2 + N, (2
in which two T = 2 nucleon isobars are produced.
The daughter trajectories would be necessary
in such processes to resolve kinematic ambi-
guities in the Regge representation similar to
those for backward scattering.

It is difficult theoretically to predict the be-
havior of daughter trajectories away from zero
energy, but it is tempting to consider the pos-
sibility that they are roughly parallel with the
parents. If so, there would be a physical vec-
tor meson of mass between 1.2 and 1.6 BeV on
the P1 trajectory, and a scalar meson of mass
between 700 and 1100 MeV on the p1. Neither
could decay into two pseudoscalar mesons.
The 1 Pomeranchuk daughter trajectory could
decay into EKn with p-wave angular-rnomen-
tum barriers in the configuration K*K, or d-
wave barriers in the configuration (KR)v, but
the quantum numbers prohibit the 0+ p daugh-
ter from decaying into ER m. Both particles
have 4Tt decay modes, the 1 into the eonfig-
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uration pp and the 0+ into the configuration Op.

Both particles can decay electromagnetically
to ~my, and this mode may be dominant for the
0 . The present experimental situation, al-
though not conclusive, does not seem favorable
to the existence of these mesons. This would
indicate that the daughter trajectories have
slopes more shallow than the parents.

We have used the Khuri representation to
characterize the behavior of partial-wave am-
plitudes a(u, l ) at u = 0 and find

a~(u, &)

F (0) r[ (0)+-'I
r[o*(0)+ f+ 2]

2 2 2 a+(0)
(m —p )

Q
, (lo)

where a+(0) is the zero-energy intercept of
the leading Regge trajectory of the same sig-
nature in the direct channel, and P+(0) is its
reduced residue. The behavior (10) applies
if o+(0) & —1, otherwise a(u, I ) -u logu. The
proof involves a straightforward estimate of
the integrals in the Froissart-Gribov defini-
tion of a(u, f ) and is given in Ref. 8. It is not
surprising that it is the high-energy behavior
in crossed channels which determines the be-
havior of partial-wave amplitudes at u =0 in
the unequal-mass case, since the integral from
z = -1 to z =+1 which defines (physical) partial-
wave amplitudes corresponds to an integration
of infinite range in the Mandelstam variables
at u =0. The behavior (10) is in contradiction
to what has generally been believed ~ 3 and may
very well have interesting implications for dy-
namical calculations. We expect that (10)
characterizes the behavior of a(u, l ) for (u [

«(m'- p,').
Goldberger and Jones' have recently written

a paper in which the same subject is approach-
ed from a different point of view. Different
results are found largely because these authors
fail to take into account the mechanism of can-
cellation of singularities by daughter trajec-
tories. They find that the condition o.(0) & —,

'
must be satisfied for the consistency of their
method. This condition would seem to be vi-
olated by the Pomeranchuk trajectory which
certainly couples to unequal-mass channels

and in Bethe-Salpeter models which have all
the analyticity properties used by Goldberger
and Jones. Since the daughter trajectory hy-
pothesis is definitely satisfied in Bethe-Sal-
peter models, we feel that it is the correct
mechanism by which the ambiguity in the Regge
representation is resolved.
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