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SUPERFLUID DENSITY AND SCALING LAWS FOR LIQUID HELIUM NEAR Tp
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The superfluid density near T& is found to vary as (T&—T$, where t = 0.666 + 0.006,
and the Josephson relation between the specific heat and the superfluid density is tested
experimentally. It is shown that, assuming the W'idom-Kadanoff scaling laws, the su-
perQuid coherence length varies as (T~-T')-&.

Although progress has been made in the un-
derstanding of higher order phase transitions,
many crucial aspects remain unsolved. In par-
ticular, the A. transition in liquid He is of in-
terest because of the possible role of quantum
effects. A particularly fruitful approach to
the general problem has been the method of
critical exponents: by assuming that the phys-
ical quantities of interest can be approximated
by a simple power-law behavior Xz= (Tc-T)&I'
in the limit T - T~. Several inequalities involv-
ing these critical exponents have been derived
using thermodynamic arguments. ' Using plau-
sible assumptions, Widom' and Kadanoff' by
separate arguments obtain these "scaling laws"
as equalities. Josephson4 has discussed the
Widom-Kadanoff scaling laws with regard to
He II near the X point. In particular, he relates
the superfluid density ps - (Ty-T)~ to the co-
herence length f and the departure of the su-
perfluid correlation function from the Ornstein-
Zernicke theory. Among the measurable quan-
tities for He II, data exist for the superfluid
density, expansion coefficient, compressibil-
ity, and specific heat. Of these, the superfluid
density and the specific heat are used in Joseph-
son's discussion of the A transition. By assum-
ing Cp- (&T) ot with n'-=0, Josephson shows
that the Widom-Kadanoff scaling laws are con-
sistent with f= -,'. Clow and Reppy' have mea-
sured the superfluid exponent f by a gyroscop-
ic technique; they obtain the value 0.67+0.03.
In this Letter we report a more accurate mea-
surement of ps (T) near T~, which we use to-
gether with an analysis of the specific-heat
data of Fairbank and Kellers' to test the Widom-
Kadanoff scaling laws. In addition, we obtain
the temperature dependence of the short-range
coherence length and discuss the allowable so-
lutions for the remaining undetermined criti-

cal exponents.
Our experimental method is that of the oscil-

lating disk pile as indicated in Fig. I. The
superfluid density is related to the measured
period of oscillation T by the relation

p 2 (7-~))
p 1 (7/7-)'tt ~ j ( 2~ j'

p "(~ -~).
s (2)

Thus the determination of the temperature de-
pendence of pz near Ty reduces to the precise
measurement of the period v as a function of
temperature.

In previous experiments in which this tech-

v ygl~',:

~Bath

V//DWg
II ~TarSIOn

Fiber

~Mirror

5m Optical
Lever

inner
~Bath

-oIsk
Pile

nr- liXgy

FIG. 1. Schematic drawing of apparatus.

where p is the total fluid density, 7.
p is the vac-

uum period, and v~ is the period at the X point.
For temperatures near T&, ps/p «1 and (7~
-~)/w& «1, whence
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nique was used, severe difficulties in period
measurement were encountered due to changes
in environmental conditions. In order to elim-
inate the effects of convection currents and
small shifts in room temperature, the entire
tor sion-pendulum assembly is surrounded by
an outer He II bath. The inner bath is separate-
ly temperature regulated to a few p, deg K. The
interdisk spacing is small compared with the
viscoelastic penetration depth at Ty, and the
viscosity correction to the superfluid-density
critical exponent g is negligible.

The experimental procedure consists of first
condensing purified liquid He4 in the inner bath
space and then cooling the outer bath below T~.
After remaining below Ty for several hours,
the system is warmed slowly to a new temper-
ature near T~ and the disk pile set into oscil-
lation (v-20 sec) by an external magnetic cou-
pling. At least 50 observations of the period
are made at each temperature. Near T~ the
error in 7 never exceeds 0.2 msec, and the
inner bath temperature is stable to a few p, deg K.
This process is continued at increasing tem-
peratures, but Ty is never exceeded. Ty is
found by observing the point of discontinuous
warming rate of the resistance thermometer
located in the inner bath near the disk pile.
The resistance R~ corresponding to T~ is re-
producible to within an equivalent +2 p, deg K.
Very low values of thermometer and light-beam
power were used, and changes in these and the
inner bath level had no effect on the measure-
ments. The period of oscillation ~& at the A

point is found from the experimental data. Per-
iod measurements for T - T~ cannot be made
because of boiling.

In the analysis of the period-temperature
data, we first obtain a least-squares fit to the
relation
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FIG. 2. Sum of squared deviations of data from
(T~-T}&=A. +B7' as a function of the p~ critical ex-
ponent g.

=E'runso ' vs g. Figure 2 shows a' vs f for
data between 60 p, deg and 50 mdeg K from T~.
Using the probable error, we obtain f = 0.666
+0.006 for the ps critical exponent. In Fig. 3
the data from the same runs are presented
as ~~-v vs T~-T. Finally, using the vacuum
period measurements at T~, we obtain'

p /p= 1.43(T -T),
s (4)

10

with P = 0.666 + 0.006.
The assumption that ps

- 1% t' is equivalent'
to assuming that the order-parameter corre-
lation function C(r) at T~ falls off with distance
as 1/r. Classically, the asymptotic form of
the fluid two-particle correlation function is
1/r The fai. lure of the classical theory in the
case of the critical point has led many authors
to propose a deviation from the classical de-
pendence on distance -e ~ ~. Widom' and
Kadanoff' have independently arrived at the

for many values of P. We then observe the be-
havior of the standard deviation squared, o~'
=Q(&~)'/N-l, as a function of g. The best
value of g is taken to be that value correspond-
ing to the minimum in v~'(g). The correspond-
ing values of A and 8 give the intercept vy for
T~-T= 0. Each run yields a best value for f,
and the standard deviation o p of f can be ob-
tained from the set of f values for all runs.
The same values of P and v~ are obtained by
geometrical construction from a graph of o'
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FIG. 3. Period-temperature data. Slope of solid
line is 3. p~ deviates from the (T&-T} behavior
above T&-T =60 mdeg.
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following scaling laws for the critical exponents:

2-Q = 3V )

y'+2P+n'= 2,

r'= (2-n) v',

(5a)

(5b)

(5c)

where these exponents are defined by the lim-
iting behavior at small T~-T of various phys-
ical quantities": C~ —(&T) n, 4 —(&T)P,- (6T) v, y- (AT) 'V, C(r)-r 1 &, where

X is the effective susceptibility and ~T = Ty.
-T. By dealing separately with the superfluid
phase susceptibility "X&,

" Josephson4 obtains
the remarkable result

p -(»)
S

Josephson then utilizes the Widom-Kadanoff
scaling laws (5a), (5b), and (5c) to obtain the
relation

2P -g v' = (2-n ')/3. (7)

We have made a least-squares fit of the spe-
cific-heat data of Fairbank and Kellers in the

range ~T & 50 mdeg to the function

C = (U/n')[(AT) -1]+V.P (8)

2P+ y'= 3f,

Rv +'Y = 2&~

V

(9a)

(9b)

(9c)

The last of these relations indicates that the

Using the same techniques of analysis that were
used for our ps data, we obtain the specific-
heat critical exponent and its probable error:
o. '= -0.014+ 0.016. With this value for e',
the right-hand side of Eq. (7) becomes 0.671
+ 0.005. - Similarly, our experiment yields 0.666
+0.006 for the left-hand side. Thus Eq. (7)
is proven experimentally to this accuracy, and
the Widom-Kadanoff scaling rules (5a), (5b),
and (5c) are likewise shown to be a. valid (though
not necessarily unique) set of relations for
He II near T&.

Rearranging (5a), (5b), and (5c) and using
P= 2P —nv', we obtain an equivalent set of scal-
ing laws involving the ps critical exponent P:

Widom-Kadanoff scaling laws, together with
our value for p, give the result v'=0. 666+0.006
for the coherence-length critical exponent. Ap-
proximating P, in the relation P= P, (4T) v by
setting ( equal to the interatomic spacing in
the T = 0 limit then yields an estimate for the
characteristic distance over which the phase
of 4 may change: For Ty-T= 10 'K,
mm. Thus we can expect the behavior of He II
to remain qualitatively similar over the range
10 '& Ty-T & 10 "K. If we assume f-=& in
(9a,), (9b), and (9c), the problem reduces to
two equations, (9a) and (9b), in three unknowns:

P, 71, y'. Thus the values of q and y' associated
with the most commonly discussed' values of
P can be determined: P= —', (molecular field the-
»y), g= 2, y'= I; p= 3, g=0, y'=-', ; p=, (three-
dimensional lattice-gas Ising model), q = —,—'„
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