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as an example of a space-time where it is im-
possible to find a connected spacelike surface
cutting every timelike line. We will call a con-
nected closed spacelike surface without bound-
ary a slice and a slice which does not intersect
any timelike or null line more than once a par-
tial Cauchy surface. It is easy to show that

if space-time admits a slice then either that
slice is a partial Cauchy surface or space-time
has a covering space in which each connected
component of the image of the slice is a par-
tial Cauchy surface. We may apply the follow-
ing theorem to space-time or to the covering
space since a singularity in the covering space
implies one in the space covered.

Theorem 3.— Space time is not singularity
free if condition (1) holds and (6) there exists
a compact partial Cauchy surface H whose
unit normals v@ are diverging, (7) every point
g has a neighborhood W such that every timelike
and null line from g leaves W and does not re-en-
ter.

Condition (7) is really a statement about cau-
sality.®® It would seem a very reasonable re-
quirement.

Finally, we make a brief mention of the tech-
nique used to prove these results. A point
p is said to be conjugate to a point ¢ along a
timelike geodesic y if p lies on the caustic of
timelike geodesics through ¢g. The point p is
said to be conjugate to a spacelike surface H
if it lies on the caustic of the geodesics nor-
mal to H. By the formula for variation of arc
length it can be shown that a geodesic y nor-

mal to H from H to a point » cannot be the long-
est timelike line from H to v if there is a point
conjugate to H on y between H and ». By the
conditions of the theorems it is possible to
show that there is a point conjugate to H with-
in a bounded distance b on every geodesic nor-
mal to H. On the other hand, it is possible
to show that there are points from which there
is a longest timelike line to H of finite length
greater than b. This establishes a contradic-
tion which shows that the assumed conditions
are incompatible with space-time being singu-
larity free.

The author is very grateful to Dr. R. Penrose
and Mr. B. Carter for help and advice.

H, P. Robertson, Rev. Mod. Phys. 5, 62 (1933).

2A. Raychaudhuri, Phys. Rev. 98, 1123 (1955).

A. Komar, Phys. Rev. 104, 544 (1956).

‘L. Shepley, Proc. Natl, Acad. Sci. U.S. 52, 1403
(1964).

5S. W. Hawking and G. F. R. Ellis, Phys. Letters 17,
246 (1965).

®E. M. Lifshitz and I. M. Khalatniko, Advan. Phys.
12, 185 (1963).

'R. Penrose, Phys. Rev. Letters 14, 57 (1965).

8S. W. Hawking, Phys. Rev. Letters 15, 689 (1965).

%C. W. Misner, J. Math. Phys. 4, 924 (1963).

1R, P, Geroch, following Letter [Phys. Rev. Letters
17, 445 (1966)].

1R, Penrose, private communication.

2g, Carter, Phys. Letters 21, 423 (1966).

BE, H. Kronheimer and R. Penrose, “The Structure
of Causal Spaces” (to be published).

SINGULARITIES IN CLOSED UNIVERSES
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In recent years, several theorems'? have
appeared which show that the singularities ob-
served in certain exact solutions of the Einstein
equations cannot be avoided by small pertur-
bations in these solutions. These theorems
are not sufficiently strong, however, to settle
completely the question whether any nonsingu-
lar solutions of Einstein’s equations can pro-
vide a reasonable model of our own universe.
In particular, should the trapped surface of
Penrose! or the expanding Cauchy surface of

Hawking? occur in our own immediate vicinity,
we could, by suitably distributing masses and
thus affecting the local geometry, destroy these
symptons of prospective collapse. Would we
thus save the entire universe from evolving
into a singular state? This seems unlikely,
and one would like to express this feeling as
a theorem.

We should like here to present a result which
takes a further step toward the more limited
goal of establishing that, with some suitable
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definition of *“closed,” all closed solutions,
with the exception of the exception of the trivi-
al flat geometries,® evolve into a singular state.

It is convenient to introduce some definitions.
The first is closely related to the visual hori-
zon introduced by Rindler® for the treatment
of space times with special symmetries. Let
V, be a four-manifold carrying a metric with
signature (-, +, +, +). Let S be a compact space-
like surface (without boundary) of V,. There
is said to be a horizon at a point P of S if there
exists a timelike curve which intersects S,
but which either fails to enter the forward or
fails to enter the backward light cone of P.
(For example, if the geometry can be sliced
into compact spacelike sections, a point P with-
out a horizon has the property that every point
of some spacelike section can be reached by
a forward timelike curve from P, and every
point of another spacelike section can be reached
by a backward timelike curve from P.) Con-
sider the family of forward-pointing timelike
geodesics emanating normally from S. The
unit tangent vector, ¢, to this congruence
may be written as the gradient of a scalar field
@ which takes the value zero on S. Here &M
and ¢ will be called, respectively, the vector
and scalar fields generated by S. The covari-
ant divergence, 5“; o of K on S defines the
expansion of S.

We shall now establish the following theorem:
Let V, be a four-manifold carrying a metric
gyy With signature (-, +, +,+). Suppose the fol-
lowing conditions are satisfied.

(1) The Ricci tensor everywhere obeys*
Ruug“g“ >0 for every timelike £#, equality
holding only if Ry, = 0. (From the Einstein
equations without cosmological constant, this
is a restriction on the stress energy of the mat-
ter under consideration. For example, for the
case of a perfect fluid, this condition requires
p=~pandp>-p.)

(2) A continuous choice of the forward light
cone can be made everywhere on V.

(3) v, contains a compact spacelike Cauchy?®
surface S.

(4) There is at least one point P of S without
a horizon.

Then V, either is a flat solution, or else has
a singularity. (A space is said to be singular®
if it contains an inextendable timelike or null
geodesic of finite affine length.)

We shall outline the argument here: Condi-
tion (4) and the construction of Avez® suffice
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to establish that there is a spacelike surface
S’ through P having the properties that its area
is greater than or equal to that of every other
spacelike surface through P, and it is twice
differentiable everywhere except possibly at
P. From these two properties it follows that
the expansion of S’ is zero except possibly at
P (where it need not be defined). By “round-
ing off the corner” at P, we may construct a
compact spacelike surface S”, everywhere twice
differentiable, whose expansion is zero except
possibly in a neighborhood of P, where if non-
zero, it is of one sign only (say, for definite-
ness, negative). Let 6 be some scalar field
on S”. Then on translating each point of S” a
distance €6 (e < 1) along the congruence gener-
ated by S”, we obtain a new spacelike surface
S whose expansion differs from that of S” by
L.y, KoV ij 2

—eG[Ruug £+t ;Vg ;u]+eh 6 |Z,],4-0(6 ). (1)
Here %/ (;,j=1,2,3) is the positive definite
induced metric on $”, and a slash denotes the
covariant derivative with this metric. Since
the coefficient of 6 in the first term of expres-
sion (1) is nonpositive on S”, it follows by a
theorem of Hodge" that we may choose 6 so that
the expansion of §” is everywhere negative
[case (1)], or everywhere zero [case (2)].

In case (1), the hypothesis is satisfied for
the theorem of Hawking,? establishing that a
singularity is inevitable. In case (2), we con-
sider the one-parameter family of surfaces
@ =constant, where ¢ is the scalar field gen-
erated by S””. From expression (1), the expan-
sion of these surfaces must be everywhere non-
positive. Should the expansion at any point of
any of these surfaces differ from zero, we could
choose 0 as before and establish the presence
of a singularity. Therefore, the expansion must
be zero on each of these surfaces if a singular-
ity is to be avoided. This is possible® only if
the Riemann tensor vanishes.

This and other related results will be discussed
in more detail elsewhere. An accompanying
note by Hawking® states the theorem on which
this one is based, along with several other re-
sults which replace our “absence of horizon”
fourth condition with various other assumptions.
It is hoped that eventually all such mathemati-
cally convenient “fourth conditions” will be
eliminated, leaving only the first three “phys-
ically reasonable” assumptions, and thus es-
tablishing that all “closed universes” develop
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a singularity.
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We report here on evidence for an extended
source of x rays in a region near the direction
of the north galactic pole. This result is based
upon data collected during two recent balloon
flights launched from Holloman Air Force Base
in New Mexico.

The x-ray telescope was suspended vertical-
ly so that the detector axis had celestial coor-
dinates given by a right ascension equal to the
sidereal time at the local meridian and a dec-
lination given by the latitude of the balloon.
The stability of the attitude was established
to within 3 deg by a camera that continuously
photographed the horizon on infrared sensitive
film. During the major portion of the flight
of 6 December 1965 the detector axis was well
out of the galactic plane, riding at a declina-
tion of +31 deg, and passed near the north ga-
lactic pole. The flight of 13 January 1966 car-
ried the telescope across the galactic plane
at a declination of +34 deg, intercepting the
x-ray source Cygnus XR-1. The residual at-
mosphere during the ceiling coverage of these
flights was 2.6-2.8 g/cm?2

Figure 1 shows the main elements of the x-ray
telescope. The central x-ray detection element
is a cesium-iodide (thallium activated) scintil-
lation crystal that is used to measure x rays
in the interval 20-100 keV partitioned by 64
channels. The plastic scintillator (CH) serves
as an anticoincidence detector of charged par-
ticles and also as the innermost section of a
three-element graded x-ray shield consisting
of tin on the outside and copper sandwiched
between. The light from the cesium iodide is
distinguished from that of the plastic scintil-

lator by its longer decay time. The entrance
port is a krypton gas proportional counter that
serves as an anticoincidence detector and is
also used to measure x rays in the approximate
interval 10-30 keV, again partitioned by 64
channels. The transmission of the gas count-
er exceeds the 50% level at 25 keV (K x ray
for Sn*1%”), At this energy, the proportion-
al counter exhibits a resolution of about 20%
full width at half-maximum (FWHM) for both
the primary and escape peaks. The resolution
for the cesium-iodide crystal is about 30% FWHM
at 74 keV (K x ray of Bi2"),

A structured response pattern was achieved
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FIG. 1. (a) The x-ray spectrometer telescope uti-
lizes the occultation scheme outlined; the detector ap-
pears at the bottom. (b) The essential features of the
detector.
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