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A number of authors' ' have developed variational methods using the Bijl-Jastrow type of wave
function to study the ground state of an interacting boson system. Recently, this procedure was ap-
plied to a realistic Hamiltonian for liquid He by McMillan. ' In his paper, the trial product-pair wave
function was restricted to a certain parametric form and 32 Monte Carlo calculations were used to
obtain a two-parameter fit. Without requiring this restriction, Hiroike has obtained an integro-dif-
ferential equation for the radial distribution function g(r) by considering 5g(r) arbitrary. However,
since this variational principle requires an arbitrary variation 5C in the trial wave function rather
than in g(r), some doubt must remain as to the validity of Hiroike's method. Therefore, we present
here a derivation of an equation for g(r) by letting 54' be arbitrary insofar as the product-pair form
is maintained.

We consider the ground state of N spinless Bose particles of mass m confined in a volume , inter-
acting through the two-body potential y(r). With the trial wave function

4 =exp[-,' Q u(r . .)],
i&j

the expectation value of the Hamiltonian is given by

8'p "
vu(r) Vg(r) dr +— y (r)g(r) dr,p

N 8m'

where p is the density. The condition that Eq. (2) be stationary with respect to arbitrary variations
of u(r) is

v'g(r)+ V'u(r')-, (p(r') dr'=0.
t' 5g(r'), , 4m

5u(r)

To determine the functional derivative 5g(r )/5u(r), we notice that the variation of the two-particle
distr ibution function

p' '(rl, r2) =N(N )fexp[ Q u-(r. .)]dr ~ ~ ~ dr fexp[p u(r. )]dr ~ d.r
i&j i&j

is, with the aid of three-particle and four-particle distribution functions, expressed as

(2)

5p'2'(r„r2) = p+'(r„r2)5u(r~2) + Jp@'(r„r2, rs)5u(r~e)dr ~

+ fp ' '(r» r» r, )5u(r»)drs + ,' ffp
' '(r»—r»r3p. r4) 5u(r34)dr~dr4

——p '@(r„r,)[fp +'(r„r,)5u(r»)dr2+ —,'Op '3'(r„r~, r4) 5u(ra~)dr~dr4].
p

Putting each term in Eq. (5) into the form

f[ ]5u(r)dr,
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we find that

{2) r ' = p"'(r„rs) 5(r„r-)+2p"'(r„r„r,+ r)
5u(r)

- sQP ' '(r~, rs)P ' '(r„r, + r) + s fP ' '(r~, rs, rs, rs+ r)dhs.

At this point it is necessary to introduce the superposition approximation in order not to have a
term in the equation with an integral of more than two dimensions. So within the superposition ap-
proximation, the last term T4 of Eq. (6) works out to

(6)

T4 = s fP' '(r~, rs, rs~ rs+ r)drs = sP g(h~s)g(h) fg{his)g(hss)g{ ~ rs+ r rx ~)g{ ~ rs+ r rs ~)drs ~

In order to clarify the next step, we introduce two new vectors, r4 and r„which do not depend on
the variable of integration. These are given by r~-r =r4 and r2-r =r, . %e then obtain

T4= sP g(h»)g(h) J"g(h~s)g(hss)g(h4s)g(rss)drs = —,'P g(h~s)g(h) &+,
" " " ', ' drs = sP (N-4)g(h»)g(h). (7)

p &r~~ r2~ r4~ rs~

Note that the artificially introduced vectors, r~ and r„no longer appear. Thus Eq. (6) becomes

5g(r')
=g(h) 5(r-r') + 2pg(h)g(h') [g( I

r-r' ~)-1].

From the classical theory of fluids, the relation between u(h) and g(h) has been found to be7

u(h) = lng(h) -
{2 s

— e dk-B(h),
1 "[S(k)-1)' ik r

27T pg

where S(k) represents the structure factor and B(h) the contribution from the bridge diagrams. Sub-
stituting Eqs. (8) and (9) into Eq. (3), we obtain an Euler-I agrange equation

1 2 1 Vg(h) s 2m 1 ' [S(k)-1]s 2 ik r
g(h) 2 g(h) t 2(2m)sp S(k)

, -V'g( ") Vg( ') ' 1 '[S(u)-1]' 2 k

-1 ~+~' -,2, , 2&&, g(a)vdv 2r' d-h'- ,'V B(h) =0. -
4 (x-i'

1
~II

This is similar to the result derived by Hiroike. In his development, all constraints on g(h) were
dropped. However, it may be shown that 5g(h) is not arbitrary. For example, 6g(h) is limited by
the relations

g(h) &0,

p f[g{h) 1]dr- =-I- (1la)

(11b)

In order to compare with Hiroike's result we derive the variation of E/N due to the variation 6g(h)
and then relate 5g(h) to 5u(h) through the functional derivative to obtain

5(E/N) = J(r) „6u(h")dr "dr,r)
6u(r")

where

5'p Vg(h) ' 2V'g(h) 4m 1 "[S(k)-1]'[2S(k)+1] ik r-2-
Sm g(h) g(h) lI' (2v)'p, S'(k)

+ v g(y'1 dr'+v B(r)}., 6B(r )

5g r

(12)

(13)

Substituting only the first term in Eq. {8) into Eq. (12) results in Hiroike's Eq. (H2-12). The neglect-
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(14)

ed term is proportional to p, which explains his success in the study of the Bose fluid of hard spheres
in the low-density limit. The density dependence of the neglected term also explains the agreement
of his previous work in the limit of weak interactions since the interaction-dependent term in Eq. (H4-
10) is also small for low density.

Including both terms of Eq. (8), we obtain a corrected equation

J(r) +2pfJ(r')g(r')~Q l r r'-~)-1]dr' =0.

The difference between Eqs. (10) and (14) is due to the different positions of 6g(r )/Gu(r) in Eq. (12)
and in the similar equation from which Eq. (8) was obtained. Thus the superposition approximation
used in these derivations enters in different ways. It is uncertain whether Eq. (10) or Eq. (14) will
be better, although Eq. (10) appears to depend less heavily on the superposition approximation.

A brief manipulation indicates that 6g(r) defined by Eq. (8) may not satisfy the condition

f6g(r)dr = 0

Ias required by Eq. (11b)]~ To remove this difficulty, we modify the functional derivative by writing

so that 6g(r) is altered to

6g(r') 6g(r') 1 6g(r")
6u(r) 6u(r) 0, 6u(r)

(16)

Substituting Eq. (8) into Eq. (16) shows that the corrections made to 6g(r )/6u(r) and 6g(r) by this
modification are of the order of 0 ' compared to 5g(r')/6u(r) and 6g(r), respectively. This correc-
tion will also add terms of 0 ' to Eqs. (10) and (14). However, these additional terms will all be
negligible in the limit as 0 goes to infinity. We notice that with this modification Eq. (11a) is still
satisfied. Numerical calculations are in progress for liquid He and for the charged-boson system.
The results will be reported in a separate paper.

We are indebted to Professor C. F. Hooper, Jr. , for several helpful discussions.
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