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In a recent paper Johnson, Dietz, and Gug-
genheim' studied the infrared emission spec-
tra of Ni++ as an impurity in the antiferromag-
netic crystals MnF„KMnF„and RbMnF3.
The ground state of the Ni ion, A2g, was found
to split into three levels, due to the exchange
field of the neighbor Mn ions. A small asym-
metry in the splitting was observed. We re-
port in this paper mor e accur ate measur ements
of the asymmetry in the splitting of these lev-
els (see Fig. 1) using unstrained single crys-
tals with smaller concentration of Ni (below
10 parts per million of Mn) and with high res-
olution. This asymmetry is shown to arise
from the effects of the zero-point spin devia-
tion.

For a given crystal, the spacing between the
three levels (Ms = 1, 0, —1) should be constant
according to the molecular-field model, in ap-
proximate agreement with the experimental
results. However, there are small differences,
6E LekE

y p &Ep „of around 10 cm ' which
are not explained within a simple molecular-
field model. In order to explain those anom-
alies, we extend the molecular-field model,
by taking into account the difference between
the usual effective magnetic field and the ac-
tual exchange interaction with neighbors as a
perturbation. The Hamiltonian of our system
1s

X=PH+g. s . -2Q J'. .(S .S . +S .S . +S .S .)i ~i . . ij zi zj xi xj yi yjiwj

+PH~(gg. s .-Qg.s .),

where H~ is the anisotropy field. Usually the
exchange interaction 4ij is negligible except
when i and j are nearest neighbors. The mo-
lecular-field theory considers only the first
term of the exchange interaction (neglecting
the other two) and equates it to an effective
magnetic field IIE.'

K = PH+g. s . + P gg.H .S .

+ PH~ (gg,s .-Qg.S .).

Therefore, our perturbation is

X'= —2 g J. (S .S .+S .S .)
iwj ij xi xj yi yj

= —Q J..(s .S .+ S .S .).
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FIG. 1. Energy levels of Ni++ in different antiferro-
magnetic crystals at 4.2'K, in cm ~. The emission
lines from T2 are about 1 cm ~ half-width, and the
frequencies quoted above are obtained from splittings
measured between the peaks of the lines. The esti-
mated error in measuring the splittings is about 0.1
cm
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This perturbation will mix excited states ob-
tained by flipping the spins of the ions into the
ground state.

Let us consider, for example, a simple anti-
fer romagnetic body- centered cubic structur e,
which can be divided into sublattices, 1 and 2,
in such a way that all the neighbors of an atom
on sublattice 1 are on sublattice 2, and vice
versa. The unperturbed ground state consists
of all the spins on sublattice 1 aligned paral-
lel along the z direction, and all the spins on
sublattice 2 aligned along the -a direction.
Deviations from such a simple model for the
ground state of an antiferromagnet have been
considered theoretically in several papers, '~'

but have not been observed experimentally.
We want to consider the energy levels of Ni

as an impurity in an antiferromagnetic crys-
tal. The unperturbed hamiltonian K will spit
the three levels (Ms =1,0, -1) of the ground
state ('A2g) of Ni symmetrically. However,
K' will affect these states in a different way
and, consequently, give a contribution to 5E.

Assuming an antiferromagnetic interaction
between the Ni ion and its Mn neighbors, the
unperturbed ground state will consist of the
spin of the Ni ion oriented, for instance, in
the —direction, and the nearest Mn ion in the
+ direction. K' will mix the ground state with
excited states coming from flipping simulta-
neously the spins of two neighboring ions by
4M& =+1 and -1,. respectively. The most im-
portant contribution to 5E occurs when the flip-
ping ions are the Ni and a first-neighbor Mn.
For simplicity, let us consider only one Mn

neighbor to the Ni ion, and write the basis func-
tions as IM&(Ni), Ms(Mn)). The three unper-
turbed states of Ni are

l-l, +-', ); Io, +-', ); I+1,+-', ).

Now, K' will mix I -1,+z) with 10, +z), and
I 0 +2) with I+1,+2). However, it will not af-
fect I+1,+2). Since the difference in energy
between I -1,+2) and I 0, +2) is

est neighbors,

where 4a. is the exchange integral between a
Ni and a Mn ion, and Jy between two Mn ions,
and z is the number of nearest neighbors.

Let us consider now contributions to M' com-
ing from flipping simultaneously two Mn ions.
Since we assume ~g& to be negligible except
when i is a nearest neighbor (on the other sub-
lattice) of j, one of the flipping Mn ions must
be a nearest neighbor of the other flipping Mn

ion. There will be a contribution if these ions
have different effective fields for each of the
orientations of the Ni spin. Therefore, these
contributions will decrease strongly as we in-
crease the distance between the pair of flipping
Mn ions and the Ni. When one of the flipping
Mn ions is a first neighbor to a Ni, we get,
after summing over all possible pairs,

50z (z-1)J' 1

4I 2/(10z 7)2g 2

a b-
5"E=-

los -7

Flipping spins on other Mn ions &' will not con-
tribute to 5E in second order.

Values of Jy are obtained from Low et al. ,
'

Windsor and Stevenson, ' and Pickart, Collins,
and Windsor. ' We get Ja from the splitting
of the lowest two energy levels, 4E, „of
Ni in the antiferromagnets (Fig. 1), assuming
the molecular-field model (-3.01 cm ' for
MnF„-7.93 for RbMnF~, and -8.53 for KMnF, ),
since this splitting is not significantly affect-
ed by the transverse part of the exchange.
Table I compares the theoretical values 5E

Table I. Comparison of experimental and theoretical
values for the asymmetry in the splitting of A2 state of
nickel ions in antiferromagnetic compounds.

g .PII . + [(z-1)/z]g PFI glE
(cm ~) (Experimental)

and the same value for the difference between
IO, +2) and I+1,+2), we obtain, in second-or-
der perturbation and summing over all near-

MnF2
HbMnF3
KMnF3

12.5
12.7
13.7

12.3
11.6
12.5

13.3 +0.1
10.9 +0.1
11.9 +0.1
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= 6'E+ 6"E with the experimental ones. The
small disagreement (less than 8%) may arise
in part from the approximations' in obtaining

Jz and from high-order interactions. This
result gives support to our extension of the
molecular-field model for discussing devia-
tions from the ground state consisting of anti-
parallel spins on different sublattices, and
confirms the observed differences M as ex-
perimental evidence for the existence of devia-
tions from that ground state.

The spin deviations defined as 1—(Ss)/S can
be computed within this approximation. For
the nickel ion in KMnF, and RbMnF, we get
4.1%, and in MnF„2.7%. The spin deviation
of the Mn ions having a nickel nearest neigh-
bor is about the same as for Mn ions in the
pure crystal. However, it has been shown that
it is necessary to go to higher order pertur-
bation theory to obtain accurate values of the
spin deviation. For example, we compute a
deviation of 1.3% for pure MnF, in second or-
der, while Walker" obtains 1.7% in fourth or-
der. The good agreement between our estimates
of 5E and the experimental values suggests
that the convergence in computing the asym-
metry of the energy splittings is faster than
for the spin deviations.

In the case of MnF„part of the observed
5E is due to crystalline effects (zero-field split-
ting) since the local symmetry of the Mn ions
is not octahedral. Our estimated O'E contains
both the crystalline and the exchange contri-
butions and was estimated by solving the eigen-
values of the spin Hamiltonian with an effective
magnetic field, Hg, due to exchange interac-
tion and tetragonal (D =4.05 cm ') and rhom-
bic (I El =3.28) parameters. These parameters
were obtained by linear extrapolation as afunc-
tion of the ratio of lattice parameters c/a, from
the corresponding parameters" in ZnF, (D
=4.19 cm ', I|El =2.68 cm ') and values we
obtained by optical spectroscopy in MgF, (D
=4.27 cm ', tEl =2.33 cm '). However, the
resultant DE does not depend strongly on this
extrapolation; for instance 6E is increased
by 0.3 cm ' if we use the values of D and E
corresponding to ZnF, .

In conclusion, we have shown that an asym-
metry in the splitting of the 'A, states of nick-
el impurities in antiferromagnetic compounds
is produced by the transverse part of the ex-
change interaction, resulting in zero-point
spin deviations of the ions. The effect is most

sensitive to the deviations of the nickel and

first-neighbor manganese ions. Although we
have not measured the zero-point spin devia-
tion of the pure, antiferromagnetic crystal,
we have demonstrated that the formalism which
predicts the disputed zero-point spin deviation
of the pure crystal also correctly predicts the
effect of the zero-point spin deviation on a nick-
el impurity.

We are grateful for helpful discussions with
W. F. Brinkman, A. Freeman, G. Pratt, L. F.
Johnson, and W. M. Walsh, Jr. , and to H. J.
Guggenheim for the zone-refined crystals.
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The complete 3 part of the S matrix for 0~6 has been computed in the one-particle,
one-hole approximation. In the continuum states the isospin invariance is totally broken;
analogous partial cross sections for protons and neutrons show large differences.

A knowledge of the V(P) and 6(P) as functions
of the energy thus allows the complete descrip-
tion of all one-particle reactions. For exam-
ple, the total cross section then is (I= spin
of target nucleus, s = spin of incident nucleon)

27rX2

tot (2I+ 1)(2S+ 1)

(2J+ 1)g [1-ReS ],N
J c cc (2)

where the summation over c is restricted to
those channels which contain only the ground
state of the target nucleus. We compute here
only the term with J=3. The form of the eigen-
channel wave function in the asymptotic region,

In a recent publication' a method has been
described by which the eigenstates of the S ma-
trix, i.e., the eigenchannels, can be directly
computed. We have tried out this method in
the case of the 3 states of 0" in the one-par-
ticle, one-hole approximation. In this Letter
we report briefly the results of this calcula-
tion. The details will be given elsewhere.

The essential points of the method are as
follows: The eigenstates of the S matrix are
standing waves in all experimental channels
with a common phase shift, say 5(p). There
are as many eigenstates as there are open chan-
nels at this energy. We denote the amplitudes
of the standing waves of an eigenstate of the
S matrix in the experimental channel c by Vc(~).
In terms of these quantities the S matrix is
given by

~ V (~,„,(„., ~))V (P*
cc' P c c'

i.e., for wc~a, is

e(')=g V ("t...~(P)Z (k ~ )
C C C C C

-sin& G (k r )]g
C C C C

where the I' and G are the regular and irreg-
ular radial functions of the continuum particle;
for a neutron they are simplyjf(kcrc) and

nf (kcrc), respectively. The channel wave func-
tions gc contain in addition to the wave function
of the daughter nucleus (i.e., the hole state)
the angular momentu~ part of the continuum
particle.

The computation of the eigenchannels was
done as follows: At a given energy, say E,
the wave numbers kc are known for all open
channels from the binding energy and the spec-
trum of the bound states of the daughter nucle-
us. Assuming a phase shift, say 6, the loga-
rithmic derivatives of the radial wave functions
in all open channels are computed from (3)
at xc =a. Sets of single-particle wave functions
for the different channels are now obtained
for a real Saxon-Woods potential' using these
logarithmic derivatives as the boundary con-
ditions. Arbitrary boundary conditions can
be used for the states appearing only in closed
channels. An orthonormal set of particle-hole
states is now constructed with these single-
particle wave functions and the Hamiltonian
is diagonalized in the space of these one-par-
ticle, one-hole (1p-1h) states. A zero-range
force' with exchange was employed. The eigen-
values obtained are plotted as a function of
& in Fig. 1 for the case F = 20 MeV. The eigen-
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