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for the distribution functions f=f(vz, r, t), which

describe the particle motion in terms of the
drift of the guiding centers. The second term

It is well known that the two greatest barri-
ers to controlled fusion are the stability prob-
lem and the impurity problem —the latter be-
ing of great importance since even a small quan-
tity of impurity greatly enhances the radiation
losses of the plasma. ' Such impurities are
likely to arise near the wall of a plasma con-
tainer, especially in the absence of a divertor.
In this note we point out that the presence of
impurity ions, especially if their density gra-
dient is different from the plasma density gra-
dient, i.e., if they are peaked near the wall,
can generate a new instability which is difficult
to stabilize and which leads to diffusion of the
impurities into the plasma.

Here we consider a one-dimensional model
with density varying in the x direction and the
main magnetic field along z. A situation with

plasma pressure P much less than magnetic
pressure B'/8w is assumed. Then, the elec-
tric field perturbations can be taken as poten-
tial: E = -V'q. Considering the wavelength of
such perturbations to be greater than the typ-
ical Larmor radii of plasma particles, we make
use of the Vlasov equation,

in Eq. (1) represents the motion of particles
along magnetic field lines, which is influenced

only by the electric-field component along B
entering the fourth term. The third term rep-
resents the electric drift cE x B/B' of the guid-

ing centers. The equilibrium distribution func-
tions for all species, which satisfy Eq. (1),
have a, form fp (x, vz, vz). The index i =I, H, e

labels the impurity, hydrogen ions, and elec-
trons, respectively. The linear stability anal-
ysis is then reduced to solving the eigenvalue
problem for the linearized equations,
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and gz represents the charge sign and number

of ea,ch species. Equation (3) is the quasineu-
trality condition.

The substitution of 5fi from Eq. (2) into Eq. (3),
since F. = -Vq, gives the final dispersion re-
lation
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For the sake of definiteness, we choose f~
=~p'(x)(~;/»T, ) / exp( —M, vz /2Ti). In this
case the integrals may be performed to give
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Here nz represents the density; Tz the temper-
ature, ' i*=k&vdi, vdi being the diamagnetic

'"""y"di='thi'&i''/('~i~it» t =(
Qt =ZieiBp/pic being the gyrofrequency; and

—1/2 +~
W = ~ I ~e d~/(P+~jt v,„.).

In general, when terms of order kyvth;/0; are
taken into account and isotropic temper atur es
are assumed, the second term in brackets is
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to be multiplied by l0(b;) exp(-b;) with 5, = knez T;/
M;Qz' and I, the modified Bessel function of
zero order. '

We first consider the case where the impur-
ity concentration is small so that nI' «nH'.
Then if the phase velocity is chosen, such that
e/kz» vtH, the presence of a small concentra-
tion of impurity ions (nf' «nfl') is irrelevant,
and we obtain the usual, stable drift oscillations
for the case of zero Larmor radius and no tem-
perature gradient. Then the more interesting
case is that given by
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Note that this may come about even for TH= TI
if MI»MH. In this case we may use the prop-
er asymptotic forms for the W functions occur-
ring in Eq. (5),'
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Noting that charge neutrality requires QZ; n;~i /
T = 0, we may solve Eq. (5) to find
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Here WI is real since co)AzvthI and marginal
stability obtains for & = -wH . The condition
for instability is then
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Two types of instability can now occur. If
the number of impurity ions is not too small,
the impurity-ion sound wave can be made to
go unstable if the denominator of the first term
of Eq. (7) is negative. As the maximum value
of W is about 0.2, the condition for this insta-
bility is
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Due to the possible large value of ZI' this may
occur at relatively modest impurity densities.

For the other mode we note that, if nI«nH,
the instability condition is given by
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For a hydrogen plasma with Te/TH =1, this
reduces to
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For this instability to occur, the density gra-
dient of impurity ions must be in the opposite
sense to that of the plasma ions and not too
large. This condition would be likely to be met
near the walls where the plasma density decreases
and the impurity density increases towards the
wall. In this case & & &* and the worst growth,

obtained by adjusting kz in Eq. (6), is

Im(~) =Re(~) =Z n '/n

On the other hand, if the density gradient
of the impurity species is of the order of that

- for the hydrogen species so that ZInI'+nH' =0,
the instability associated with Eq. (5) is of flu-
id type' in the sense that it does not involve
wave-particle resonance and occurs in the lim-
it vthe ~/kz &vthp&v

This instability is very reminiscent of the
temperature-gradient instability4 because it
occurs for long wavelengths and involves ion
rather than electron Landau damping. As in
that case, it can be shown that shear is rather
ineffective for stabilization. &4 We note that
what is relevant for this instability is not the
temperature gradient but the gradient of mean
parallel velocity, which may be due to either
a temperature gradient or a gradient of mean
mass number as in our case. The quasilinear
effect of this instability is of course to cause
an outward diffusion of plasma ions and an in-
ward diffusion of impurity ions.
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In two former papers" it has been stated
that monoenergetic' fast electrons interacting
with molecules excite infrared active fundamen-

tal vibrations with high intensity. Consequent-

ly, strong interaction of fast electrons with

optical lattice vibration should be expected in
alkali-halide crystals. In these solids, how-

ever, as is well known, electromagnetic waves
excite transverse vibrations iz& of the lattice,
whereas a charged particle excites the longi-
tudinal modes w&. The maximum of light ab-
sorption and the most probable energy loss
appear at different energies.

Figure 1 represents (a) the real and the imag-
inary part of the dielectric constant e (~) = e, (~)
+is, (~), (b) the reflection spectrum (reststrahl
band, and (c) the energy-loss function -Im[l/
e(&u)] according to the dielectric theory4 of an
infinite medium, in lithium fluoride. The absorp-
tion spectrum, which is essentially proportion-
al to e„shows a rather sharp peak at S~~T = 0.039
eV. The reststrahl band extends over a wide

range from 0.03 to 0.08 eV. The energy-loss
function calculated from the optical constants
exhibits a peak at @~I = 0.081 eV, where e~

vanishes, in accordance with the Lyddane-Sachs-
Teller relation. '

The high-resolution technique recently devel-
oped3 enables us now to separate those electrons
which have lost such small amounts of energy
from the unaffected electrons at 25-keV primary
energy. In contrast to the energy-loss function,
the measured energy-loss spectrum of a 400-A
LiF foil (Fig. 1) shows a broad band between
0.03 and 0.11 eV with a maximum at 0.047 eV.
The spectrum is corrected by subtracting the
slope of the no-loss line. ' The excitation of
lattice vibrations takes place with largest prob-
ability at an excitation energy between those
of the transversal and longitudinal modes. The
energy-loss spectra depend slightly on foil thick-
ness (Fig. 2). The maximum shifts from 0.042
to 0.050 eV when the foil thickness increases

from 240 to 700 A.
In addition to these energy losses, energy

gains of the primary electrons could also be
observed in the spectrum (Fig. 2) changing their
position in the same way. The energy gains
disappear when the specimen is cooled down

to the temperature of liquid air. Since process-
es leading to energy loss and energy gain have
equal probabilities, the intensity ratio of en-
ergy gain and energy loss is proportional to
the occupation probability of the state, which

is a function of the temperature of the speci-
men.

The discrepancies between the computed and

measured energy-loss spectra in Fig. 1 are
caused by the fact that we are dealing with a
finite medium. On the assumption that the ex-
citation probability of lattice vibrations (dl is

bur = 0 039
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FIG. 1. Dielectric constant e = e&+ie2, reststrahl
band R, energy-loss function —Iml/e, and experimen-
tal energy-loss spectrum (normalized) of LiF on car-
bon substratum, EO=25 keV, 8 ~ 1&& 10 . Optical data.

taken from M. Gottlieb, J. Opt. Soc. Am. 50, 343 (1960).


