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Fig. 1. The phototriton peak was much wider
and had a shape imposed by the transmission
function. It could be moved from about 1.5 MeV,
where it merged with the background, to 7 MeV
and beyond by varying the magnet current.
The targets were less than 100 keV thick to
(n, n) tritons, so background cannot explain
tritons observed below 2.6 MeV. The high-en-
ergy tritons are not due to possible neutron
contamination of the incident beam, "nor to
secondary neutron reactions in the target. "
Other workers'3 using nuclear emulsions as
detectors have also reported (y, t) measurements
in the region of the giant resonance. Their
results appear to be entirely due to slow-neu-
tron background. Their triton energy spectrum
is strongly peaked around 2.7 MeV, and their
cross section is more than 10 times greater
than ours.

Figure 2 shows the cross section obtained
from overlapping data taken at three magnet
settings. The data from the different Li' runs
agreed within the assigned errors. Since pho-
totritons and photoprotons are detected simul-
taneously in this experiment, their yields can
be compared. We find, for example, that the
Li'(y, t) cross section at 21.5 MeV is about the
same'~ as that for Li'(y, P) at 14.2 MeV, and

equal to about 0.4 mb. One can infer from t.he
Livermore data' that o (y, P) = 0.6 mb at 14 MeV,
which confirms the order of magnitude of our
cross sections. From Fig. 2 we conclude that

o(y, t) integrated to 24 MeV is less than 5 MeV
mb. If the dipole sum" is exhausted in Li',
there must, be considerable dipole absorption
above 24 MeV.
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FIG. 2. Phototriton cross section obtained from data
taken at three different magnet settings. The errors
are greater than statistical, because of uncertainty in
subtracting the proton transmission tail underlying the
triton peak.
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A recent optical-model analysis of 30-MeV
proton-scattering data' indicated that the ra-
dius parameter for the spin-orbit interaction
was approximately 10% less than that for the
real central interaction. A similar result has
been noted at 10,' 14,' 18,' and 40 MeV. ' At

30 MeV the averaged radius and diffuseness
parameters for nuclei with A from 40 to 208
were 1.20 F, 0.7 F for the real central poten-
tial, and 1.10 F, 0.7 F for the spin-orbit po-
tential, using a Saxon-Woods form and a Thom-
as form, respectively.

The difference between the radii for the real
central potential and the spin-orbit potential
of the optical model can be interpreted in terms
of the interaction of the incident proton with

the nuclear matter distribution via the two-body
nucleon-nucleon force. To do this it is neces-
sary to recognize the particular components
of the two-body force giving rise to the two

potentials and to adopt an appropriate folding
procedure. In a first approximation neglecting
target polarization and exchange effects, the
folding procedure for the real central potential
consists essentially of adding mean-square ra-
dii' with the dominant contribution coming from
the "direct" (spin- and isospin-independent)
part of the nucleon-nucleon potential. Phenom-
enological two-body potentials which are com-
monly accepted have mean-square radii for the
attractive part of the "direct" component in the

range 2.5-3.5 F'. The precise value within this
range is not critical for the present purpose
and a value of 3 F' is taken which is the mean-
square radius appropriate to a two-pion exchange
mechanism. '

An indication that the approximations involved
here are reasonable can be obtained from a
consideration of alpha-alpha scattering where
a great deal has been done using the resonating-
group formalism. ' In this case, using fully
antisymmetrized wave functions, the effective

interaction between the two alpha clusters is
given by a direct term and an exchange term.
The direct term represents a local potential
which arises from the direct part of the nucle-
on-nucleon potential and has a mean-square
radius equal to the sum of the mean-square
radii of the two alpha particles and the mean-
square radius of the two-body potential. The
exchange term, on the other hand, represents
a nonlocal potential with a kernel which is l

dependent.
These results have been used by Ali and Bod-

mer' to construct phenomenological alpha-al-
pha potentials for /= 0, 2, and 4 which fit the
relevant phase shifts for center-of-mass en-
ergies up to about 20 MeV. These potentials
consist of an attractive and a repulsive part.
The attractive part is l independent and of sig-
nificantly longer range than the repulsive part
which depends upon the l value. Furthermore,
the tail of the attractive part of the alpha-al-
pha potential corresponds to a central spin-
and isospin-independent part of the nucleon-
nucleon force with a range close to that for
a two-pion exchange mechanism.

The resonating-group formalism, upon which
these results are based, neglects the effects
of mutual distortion of the alpha particles.
This is not a serious limitation as far as the
mean-square radius of the alpha-alpha poten-
tial is concerned since Herzenberg and Rob-
erts" have shown that the polarization poten-
tial resulting from this mutual distortion has
a range similar to that of the exchange part
(i.e. , of shorter range than the direct term)
and is relatively small in magnitude.

Thus for the alpha-alpha potentials the direct
term has an appreciably longer range than the
exchange and polarization terms. It seems
reasonable to expect that a similar circumstance
exists in the nucleon-nucleus case where, in
addition, it has been estimated by Drell" that


