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estimate of Eq. (5). Corrections to Eq. (5),
which include the effect of a velocity component
parallel to Iat, a finite electric dipole moment
(E.D.M. ) and possible time-average radial elec-
tric fields (Ez), have been obtained by Ford
and Hirt (University of Michigan, 1S61, unpub-
lished) and are presented in Ref. 2. For zero
E.D.M. and negligible (E~),' these corrections
come to less than 0.07/o and will therefore be
neglected, since our determination of "a" is
only accurate to +l%%uo.

We conclude that although our value of "a"
is higher than the theoretical value of 0.0011596
for the electron by somewhat more than one
standard deviation, we see no basis for assum-
ing that the positron and electron g factors are
different. A more accurate experiment now

being started should test for a real difference
between the anomalies down to the 0.01' lev-
el. In the light of recent speculations concern-
ing violations of fundamental symmetry prin-
ciples, it is interesting to note that if TCP is

&electron =gpositron
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Any meaningful r elativistic generalization
of SU(6) symmetry leads to noncompact groups
and infinite multiplets, and hence, to practi-
cal difficulties in carrying out detailed calcu-
lations. This accounts for the long interval
that has elapsed between the first proposal'
to study the group

P.SL(6, C)

[semidirect product of the Poincare group P
with SL(6, C)) and the first complete calcula-

tion presented in this report. Previously we
have calculated the strong Yukawa vertex, ' but
to lowest order in the momenta only. The weak
and electromagnetic vertices are much simpler
to evaluate, because only two infinite multiplets
are involved. In fact, the calculation of all such
vertices may be simply reduced to the calcu-
lation of a prototype. This latter, which may
be tentatively identified with the charge form
factor, is evaluated in this paper.

The baryons are assigned to a unitary, irre-
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ducible representation of the group (1). As in
previous publications, ' ' we use the represen-
tation whose tensorial basis is

@81 BN
( )

»1~ '''~»N+k

with k =3 and N =--,'. The exact form of the
electromagnetic vertex is not yet known. How-

ever, except for the possible existence of cor-
rection terms with higher derivatives, the charge
part of the interaction is related to the current

@.1' ' .N+k(x) s qe 1' ' '' N (x),
&1 "' &X &1 ''' »X+I

where Q is the usual SU(6) charge operator.
In momentum space this is

(1/2m)(p+p') + ~
' '

~
+ (p )

» 1" &X

(p).»N+k
To compute the matrix elements of this cur-

rent between the physical baryons, we must
repla, ce 4 (P) by its projection onto the 56-di-
mensional representation of the little group
SU(6)p, and 4(p') by its projection onto the 56-
dimensional representation of SV(6)p, . This
is accomplished by the substitutions'

Sp" ~ ~ ~ p. "~
] ' ' ' ~»y+~ A]»+ Ay+1 ~ ~ ~ »++

(sa.)

~A]~ ' ' ~IAN+k(p, ) NS@AI~ '' '~Ak(p, )p Ak+1. . .p
AN+k

Bl, , BN BN

where S stands for symmetrization in»1, - ~ ~,A~+~, and

PA
= (PO-P ~) &, , P '„=(Po'+P'o) & .--P b,B, , P b

The general form of the answer is

(4)

where

B -2 C,BT =m 'P
We must now calculate the completely contracted product of the two tensors (Sa) and (Sb). It is

sufficient to symmetrize with respect to the upper indices on 4'. '. .'. Summing first over the positions
of » &,

- ~ ~,»& we obtain xmmedzately

Z [+,' '
@ . . (p)]l

k . (P') 8], ~ ~ ~, BiAi+I '' Ak &i i NA1, ~ ~ ~, Ai'

where

81~ ' ~8i =m [g(ppi)81. .. (ppi)BN)6Ai+1. . .6AN
~ ~ ~

(5)

and S stands as usual for symmetrization in the indices. Next we easily see that

81~'''~ i N '&gT 81.. ~ T B~Q»1." »; (a])A] (&,)Ai N —&], , —~i'
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where the sum is over all positive integer values of ay, ~ ~ ~, a;, subject. to the condition ay+ ~ ~ ~ +ai- N. [We complete the calculation for positive integral, but otherwise arbitrary, values of N, and
continue the result analytically to W= --', .] Furthermore,

where

B 8 -2 C,B
A (1)A A C'

y =m '1g +[(PP )'-m']'"), z=y-y '.

Substituting (7) into (6) we obtain

Bl, ~ ~ ~, Bi
I g( )i

—j i STB1 TB 5Bj+1 5BiQ(i)
Ay, ~ ~ ~ Ai )i . j Ay Aj Aj+y Ai N-i+j'j=0

where Q&(~) is defined recursively from Q~
by

N-1
(i) -1 W —j -N +j (i —1) (0)

j=0
The problem is thus reduced to the evaluation
of Q~, defined by (5) when i = 0, and this is the
difficult part.

We calculated Q~ as follows: First we made
a detailed calculation for several low integral
values of N, and made an Ansatz for general
N. Then we derived the recursion relation

fo = (1/80)(u "j'[9-20(u + 15(u'-3(us-(u ],

f, =3(1/80)(d ""[9—1@v+5~'+v'],

f, = 3(1/80)(u ""[9-7(u-(u'],

f, = (1/80)e "~'[9+(()]

Reducing Eq. (4) to a matrix element between
proton states we obtain, in terms of the conven-
tional two-component Foldy-Wouthuysen spin-
ors,

K-1

N N.

and verified the Ansatz by induction. The cal-
culation of Q&(') was then considerably simpli-
fied when we discovered that

Q~
= (1/i+3)(&/&~)Q~,

(i+1) (i)

where ~ =y+y '+2. The result is

(k) i k ,'' P 2i+2 P i—+—-,'-P -p
9 = (d (-)~g p 4+22 p=0

and the functions f in Eq. (4) are

(E+~)(E'+~) '", 1, 5 ~)(P.R
2Z 2Z ~ (8+m)(Z +~) "'

where t = (P-P')'& 0 is the invariant momentum
transfer.

The current (2) has a formal similarity with
the Born approximation in local field theory,
and we shall therefore refer to the approxima-
tion

~ (p, p)=(1/2~)(O+O) ~ ' ' ~'k(~)
BN

0

Q@B1, ~ ~, By
A1, . ,Ay pk(P)~

as the "local limit. " This notion of locality
is, of course, not the same as the locality of
the conventional Dirae theory. The charge form
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factor GE(t) is defined by

J Dirac
p,

,'(~ ~),(-,'.) '.,()

(E+m)(E +m) '" „(pa)(p o)
2E.2E' " (E+m)(E'+m) "'

and Dirac locality means GE (t) 1
= 1, whereas

in our "local limit" GE(t) = [1-(t/4m')]
The principal feature of weak and electromag-
netic interactions in a. relativistic SU(6) theo-
ry is thus the appearance of damping at the
vertex, which makes it possible to set up a
highly convergent perturbation theory. ' It turns
out that this damping is essentially the same
for all the states in the infinite multiplet, and
hence for all values of the spin. The usual dif-
ficulties of higher spin theories, both of con-
vergence and of positive definiteness, are com-
pletely absent.

In Fig. 1 we have shown GE(t) in both the con-
ventional and the new local limits. The improve-
ment over conventional local field theory is

1,0

05-

striking, especially at large momentum trans-
fer. Of course, the low-momentum transfer
region is known to be strongly affected by the
nearby vector-meson poles, and there was no

way for the vector meson to insinuate itself
into our calculation.

I.et us now define the "dynamical-charge form
factor" D(t) by writing the effective charge cur-
rent as follows:

~ (P, P ) = (1/2 )(P P )„(P)@ (P)D(t).

G (t) =[1-(t/4 ')]-'"D(t).

The first factor is to be regarded as purely
kinematical; we therefore attempt to approxi-
mate D(t), rather than GE(t), by the contribu-
tion of the nearest vector-meson poles'.

D(t)= —', ~ +2 +3~-t p-t

The resulting values of GE(t) are also shown
in Fig. 1. The fit is excellent: thus the kine-
matical factor [I-(t/4m )] " removes the dis-
crepancy between the experimental vector-me-
son masses and the masses predicted by Frazer
and Fulco. v

Note added in proof. —The result presented
here is not immediately relevant for the pro-
cess of annihilation through a virtual one-pho-
ton state. In fact the direct calculation of the
virtual annihilation process gives the following
result:
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pea' p~ e(Y

X +
XC Z+m E +~ ~'

03-

02-

O,l-

40 80 120 160 200

e 2(F

FIG. 1. The horizontal line represents Gg (t) in the
conventional local limit. The broken lines represent
Gg (t) in the new "local limit" suggested by the current
(2). The solid curve is the form factor (8) with the "dy-
namical" form factor given by (9). Error bars indicate
experimental points. 8

with t = (p+p')'& 4m', which is perfectly well
behaved at threshold. The details of a mani-
festly crossing symmetric formulation, suit-
able for the development of a field theory, will
be presented in a later publication.
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It is straightforward to write down a Lagrangian
with a minimal, gauge-invariant electromagnetic inter-
action. Due to the strong formal similarity with con-
ventional local field theory it is likewise easy to set
up a perturbational scheme of calculation, complete
with Feynman diagrams and Feynman rules.
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bels. The details of this formula rest on the assump-
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p mixing angle is the standard one of 35.1'.
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ERRATUM

LINEAR INSTABILITY THEORY OF LASER
PROPAGATION IN FLUIDS. K. A. Brueckner
and S. Jorna [Phys. Rev. Letters 17, 78 (1966)].

There is an omission on page 80 of this pa-
per. Below Eq. (7), the following line should
be added

2 ~ (o&a+~ (o)2 + k /k
0 I S ' z x'

$=1+2n k /p, , k'=k '+k '.
2 0 ' x
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