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This Letter reports the measurement of the
time evolution of a stationary Gaussian field
by means of joint photocount distributions, which
can be considered as a generalization of the
single-time photocount distributions used thus
far in all previously reported experiments. '

In those experiments, photoelectric counting
measurements are performed for an observa-
tion time, T, much shorter than the coherence
time of the field, so that, when dealing with
a stationary field, one measures the probabil-
ity distribution W, (n) of sorting out a given count
number from the available statistical ensem-
ble, or, using the theory of the photoelectric
measurement, '~' the probability distribution
of sorting out a given field intensity from its
ensemble. '

The one-time probability distribution 8', does
not completely describe a random field, unless
one has separate information on the law of mo-
tion. ' One way of measuring the time evolu-
tion of a field would be observing the photocounts
for increasing times T up to (or larger than)
the relaxation times of the field and then cor-
relating the field evolution to the various shapes
of the photocount distribution. This has been
treated theoretically for a Gaussian field evolv-
ing as a Markoff process (Lorentzian spectrum), "
and asymptotic formulas have been given for
the photocount distribution when T is much lon-
ger than the coherence time. '~" Experimental
results have been given by Arecchi (Table II
of Ref. 2) and Johnson, McLean, and Pike. '
Evidently, this is a smoothing procedure which
averages out the relevant statistical informa-
tion over long integration times.

The procedure we report there corresponds
instead to spanning a long time interval by sep-
arate, correlated observations, each one last-
ing for a time, T, much shorter than the co-
herence time so that it can be taken as an "in-

stantaneous" observation. The measurement
consists essentially in repeating twice the op-
eration described in Ref. 2 and correlating the
two observations. The photoelectron pulses
from a single photomultiplier charge a capac-
itor for an interval, T, around time t, and again
for an interval, T, around time t2 (the time
interval t2 &y being controlled by an electron-
ic clock). Voltage outputs from the capacitor
are sent, respectively, to the first and second
address of a bidimensional, multichannel pulse-
height analyzer. The measurement is classi-
fied on a 32&&32 matrix. The 1024 numbers
of this matrix yield the joint photocount distri-
bution W2(n„ t„n„t2). Defining a. conditional
probability, Pc, through the relation

(n, t;n, t )=P (n, t In, t )W (n, t ), (l)2'2 c

one easily realizes that Pc is given by the 32
readings on the row corresponding to a chosen
value of n, . The marginal distribution W, (n, )
= W, (n2) corresponding to an uncorrelated ex-
periment is obtained by summing for each col-
umn (or row) the values corresponding to all
rows (columns) belonging to that column (row).

A direct measurement of Pc can be obtained
using the count number n, at t, to operate a
single-channel amplitude analyzer, which in
turn gates the second count number n, at t2,
allowing it to be classified by a standard mul-
tichannel analyzer, only when n, has correspond-
ed to the selected value. Moreover, by this
second technique 512 channels are available
for each Pc distribution instead of only 32.

Measurements are reported in Figs. 1 and

2, in the case of a Gaussian field obtained by
random superposition from uncorrelated scat-
terers. ' The results are interpreted with great
accuracy by the following considerations. De-
fining a joint-field distribution function in the
Glauber representation by"

(E,t;E, t )= JP({n })5'[E —E(t, (n })]52[E E(t, (n })]II d2n
2 2' k'

one easily obtains for the case of a stationary Gaussian-Markovian field,

1 —IE, I'+ IE, I' —2 ReE,E,+ exp( —PT)
» &» ) m (n)[l —exp( —2PT)] (n)[l —exp( —2Pq-)

(2)
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where"

(n) = 6"'(x, t; r, t)T

is the average photocount number per obser-
vation time (for simplicity we have taken unit
quantum efficiency) and Ig"'(&) I = exp{—PT) is
the normalized autocorr elation function. As
for the first-order distribution functions, ' one
can define here a generating function' as the
following average over the joint photocount dis-
tribution:

( 1) 1 2 s 1 2

QP.„x )

-X =X =1

Substitution of (3) into {5)yields

Q(A. „,A. )

= (1y (X, + X,)(n)+ X,A,(n)'[1-exp(-2Pr)]j '. (7)

In the case &-~, this factorizes into the prod-
uct of two independent generating functions
for geometric distributions. Using (6), one
then finds that W, (n„n, ) is given for any val-
ueof gaby

W, (n„O;n„~)

(n, +n, )! ((n)B) '
n+n+j.

n J 462

x,F,(-n„-n„-n,-n„C), (8)

where 4 = 1+ 2(n) + (n)'[l-exp(-2PT)], B = 1+ (n)
x[1-exp(-2Pr)], C = [1—exp( —2PT)]A, /B', and

,F, is the Gaussian hypergeometric function. "
For instance when v =0 (fully correlated mea-
surements) one obtains (Fig. 1)

(n, +n, )! (n) '
2 1r r 2r ] r

tn I (1+ 2(n))

whereas, for &-~, one obviously obtains the

Q (X„X,) = ((l-X,) "(1-X,) ').
It is easily shown" that Q is related to the joint-
field distribution function by

Q(X„X,) = f exp(-X, IE, I'T) exp(-X, IE, I'T)

xg, (E„E,)d'E,d'E „
which allows connection of the field to the pho-
tocount distribution by means of the relation

product of two geometric distributions refer-
ring, respectively, to n, and n, counts.

As shown in Figs. 1 and 2, the agreement
between theoretical curves and experimental
points is within the experimental error. These
results complete the investigation on the ran-
dom scatterer used in Ref. 2, showing that not
only the associated ensemble distribution is
Gaussian, but also thai the associated time
evolution is of Markovian type, as one would

expect in an ideal Brownian motion. "
The applications of the method introduced

here are much more general than the investi-
gation of a stationary Gaussian field present-
ed here. Use of the linear method to get rid
of dead-time effects" permits the use of T in-
tervals as short as a few nanoseconds, and

thereby allows investigation of relaxation phe-
nomena in the nanosecond region. Knowledge
of the joint photocount distributions allows the
evaluation of interesting correlation functions
such a,s (n (t,)n (t,)). For A, = h = 1, this meth-
od has already been used elsewhere" to show

the bunching associated with a Gaussian field,
and the result is equivalent to a Hanbury-Brown
and Twiss experiment. When k, h & 1 these func-
tions are very useful in the investigation of
coherence properties of multiple photon pro-
cesses.
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Since Morrison' suggested the possibility of
gamma-ray astronomy in 1958, there has been
a growing interest in the field. Many theoret-
ical reasons for expecting a measurable pri-
mary y-ray flux at the top of the earth's atmo-
sphere have been discussed. These are sum-
marized in four excellent reviews of the field' '
which have been published in the past two years.
To date, several experiments have been report-
ed ' in which a variety of instruments have
been used to search for point sources. None
of these experiments yielded any definite evi-
dence for the existence of localized source in-
tensities. Cobb, Duthie, and Stewart" have
set upper limits of 5x10 ' cm. ' sec ' from
the Crab Nebula and a few times 10 4 cm
sec ' from three other celestial objects. I'rye
and Smith' have also set upper limits of a few
times 10 4 cm sec ' from a variety of ce-
lestial objects. Similar results were report-
ed by Kraushaar et al. In this Letter we wish
to report the existence of an anornalously high

count of gamma rays from the direction of the
constellation Cygnus. This high count was as-
sociated with an energy spectrum which appears
to differ significantly from the spectrum of sec-
ondary y rays generated by cosmic rays inter-
acting in the atmosphere above the balloon-borne
detection system.

The present detection system is similar to
that described elsewhere" except for a change
in the location of the anticoincidence counter.
A scintillation-and-Cherenkov telescope was
used as the trigger for the detection of gamma
rays converting in a,-in. lead radiator placed
between two spark chambers. The system is
estimated to become very inefficient at detect-
ing gamma rays with energies less than 50 MeV.
The conversion efficiency for vertically inci-
dent y rays approaches 19% at high energies.
The area solid angle factor was 25.8 cm' sr.
The two spark chambers were used to identify
the y rays and to determine the direction of the
incident photon. The data reported here rep-
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