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Table II. Critical temperatures and slopes of the
critical field curves at T =T~ for the isotopes of zinc.

T
C

(K)

(dH /dT)

(Oe/'K)

Zn«
Zn"
Zn"

0.856 +0.0015
0.848 +0.0015
0.841 +0.0015

104.5 +1.6
104.1 +1.7
103.4 +1.7

dT) T T obtained from the work reported here.
C

The errors shown for these quantities in Table II
and the errors given for z and & in Table I re-
Qect the extreme spread of the'se values for
different runs. They also reflect differences
introduced by assuming that the temperature

at which each transition takes place is that at
which the signal had decreased by 90% of its
maximum change instead of by 50%.
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This Letter presents a framework for ana-
lyzing space-charge waves in two-valley semi-
conductors. We have (1) determined different
classes of propagating waves, (2) developed
velocity criteria for accumulation and deple-
tion layers, (3) analyzed the stability of either
domains or layers, and (4) derived an expres-
sion for the ac impedance across a propagat-
ing domain.

Undimensionalized, the relevant laws are
as follows' ".

Displacement current,

exactly and shows the development of domains'
bounded by shock fronts where I$g~ I

-~.
For constant external current, Eq. (4) admits

steady propagating solutions ($t =0). This case
can be reduced to quadratures. ' Letting $~
=$~($) (for which $gg =$gd$~/1$) yields the re-
lationship

v I

C($, $ ) =$ -ln($ +1)-
~

1$'
„$~ D

e$ y$t

D($')[$ ($')+I] '

internal current law,

q(x, t) =n(x, t) v($) -D($)n (x, t); (2)

Poisson's equation,

$ +(v-c)$ -D$ =f-v.
H

Without diffusion (D =0), Eq. (4) can be solved

(4)

where f is the external current, and the drift
velocity v($) is given in Fig. 1(a). With new
coordinates moving at velocity c ($ =x-ct), the
above give the partial differential equation

where E is a constant of integration. If c =f,
then 4 =K becomes a first integral. Once $~($)
is known, the spatial waveform follows from
quadrature of d$/d$ =$~($).

Various classes of solutions are shown by
the curves in the ($, $g) phase-plane diagram
Fig. 1(b): (1) The open arc curves F, and I;
both atta, ch to the singular points $z and $&
and represent, respectively, accumulation
and depletion layers; (2) the curve Is is for
c =f and K = 0. Initially $~ = 0 while $ =$~; then

$~ goes through positive values until $ achieves
a maximum, and then through negative values
as $ returns to $~. This is a high-field prop-
agating domain. A family of low-field domains
attached to $& exists for external currents in-
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v=v(f) general perturbation on Eq. (4)

[g=g, (() +g, ((, t), f=f, +f,(t), c =c, +c, ]

yielding g +Lg =f +c g

where

8 8
, -(v —c )—-(g +1)v

8$' 0 8$ Ot g

The translational invariance of Eq. (4) gives
at once

I.g

(8)

FIG. 1. (a) v{g) with anomalous region, {b) orbits in
the (g~, g) phase plane.

Thus S0~ is an eigenfunction of L, with eigen-
va, lue zero.

For a criterion on the velocities of "layer"
solutions, let f, = const, g, = g, (]) in Eq. (8),
giving

r.g =f +c g

sufficient to support high-field domains. (3) The
curve 14 is for another value of the invariant;
it is representative of a family of solutions
which cannot attach to a singular point and cor-
responds to a periodic oscillation. This situ-
ation corresponds to multiple propagating do-
mains, as observed experimentally by Kino
and Owen. '

A closed orbit is impossible for c gf, since
the contrary would imply

$dg(D(g) [g (g) + 1]) '"= 0,

from the single valuedness of C(g, g~). But the
integrand of (6) is manifestly smaller on the
outward arc than on the return. However, the

open arc or layer solutions are permissible
for c gf. [Closed orbit solutions with more com-
plicated internal current laws then (2) may like-
wise depart from the criterion c =f.]

Where g~ = —1, from Eq. (4) g~q has a single
signature', hence the system point can cross
g~

= —1 only once; thus for any path between
singula. r points,

(7)

which will be used below.
To simplify the presentation subsequent de-

velopments will be for field-independent diffu-
sion. There is a natural generalization for D(g).

A cluster of rigorous results follow from a

A solution to (11) exists only if there is no ad-
mixture, on the right-hand side, of the eigen-
function of I. corresponding to eigenvalue zero.
This condition determines c,. Under the sim-
ilarity transformation

, (v-c)
T($) =exp ——,

' ' d(' (12)

the operator

(13)

becomes Hermitian with orthogonal eigenfunc-
tions. The admixture can be evaluated direct-
ly as a, Fourier coefficient, and setting it equal
to zero yields

(14)

Thus dc/df &0 for S0~&0; and dc/df&1 if S0~
&0 follows from (14) and (7). A value of f can
be chosen such that c =f for both layer solutions.
This occurs if C (g&, 0) = C (go„0) =0, which is
the condition that the two hatched areas in Fig. 1(a)
are equa. l.' Thus for higher externa, l currents
the dc/df conditions above show that the accum-
ulation layer moves more slowly, and the de-
pletion layer moves faster than the drift veloc-
ity.

The stability of the various wave forms against
perturbations which do not alter the external
current will be determined by choosing g,((, t)
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f d~ig (gI)

and c, =0. Here h is understood to include a
dipole domain well removed from both ends
of a diode of length (5 a). T-he time-dependence
eigenvalue equation becomes

(~+I.)$, = fd-~ h, (g ).1 5
(17)

Such an equation may be solved by specifying
the eigenvalue (say A = i~) and solving for the
"coupling constant" Z.' lf the eigenfunctions

gi~ of I are so normalized that f T'Sim'd$
=1, the solution is

&(~)=g (X +i(u) '(fd($ )(fd( T'8 ). (18)

For a diode containing a propagating domain,

~o is negative, as observed above, the rn =1
term vanishes with the first parenthesis of
Eq. (18), and higher terms become character-
istic of the passive regions of the diode. Thus,
approximately (neglecting distributed capaci-
tance of the passive diode), Eq. (18) may be
written in the form

(1 C)
(1/R C)+ i(u +'

where in our units

=(b-a)/v (S ),+ n'

(19)

(20)

= exp(A t)$,($), f, = c, = 0 in Eq. (8), giving

, = -Lb, .
Stability exists if and only if all the eigenval-
ues of L are non-negative. The eigenfunctions
of L and L fEq. (13)]have the same zeroes and
eigenvalues. L is Hermitean, ' its "ground state"
is the one eigenfunction with no zeroes. For
"layer" modes, h0g has no zeroes; hence these
modes will be stable. For the "domain" mode
on the other hand, 80p has a zero, implying
another eigenfunction with negative eigenval-
ue, and hence, instability. Similarly for the
periodic mode, a whole "energy band" of eigen-
values less than zero exist, giving instability.

Finally, by Kirchoff's laws, the ac impedance,
Z, of an operating diode equals that of the ex-
ternal circuit. In Eq. (8) this gives

VA
-IR t

FIG. 2. Equivalent circuit for sample containing a
domain.

which is positive,

C = (fd ( 8„) '( fd ( T'8 )

which is positive, and

R = I/CX(),

(2i)

(22)

i~ = -[(1/~,c)+(1/~ c)j. (23)

One interesting implication is that a domain
becomes unstable if the external load is too
large.

We would like to thank Professor A. McWhort-
er for drawing our attention to the work of Butch-
er.
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which is negative. This leads to the equivalent
circuit shown in Fig. 2.

An inspection of Eq. (17) reveals two period-
ic modifications in the domain: an oscillation
in its thickness and an oscillation in displace-
ment from its equilibrium path. The former
is responsible for the impedance given in Eq. (19).

If the external impedance Z(cu) is specified,
Eq. (18) or (19) becomes a stability equation
to be solved for complex iu. A positive real
part implies instability. For example, in the
special case of fixed external voltage (Z= 0),
Eq. (19) yields


