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This Letter is a summary of preliminary
experimental studies of a number of relaxation
processes involving excited vibrational levels
of the CO, molecule. These studies involve
the use of a new technique in which infrared
fluorescence, induced by the application of in-
tense pulses of @-switched 10.6-u laser radi-
ation,’? is used to obtain an accurate measure
of the rate of volume quenching of the first ex-
cited asymmetrical stretching mode (00°1) of
the CO, molecule. We have also shown that
a number of widely spaced vibrational levels
of this molecule are highly coupled through col-
lisions; because of this, the energy stored in
these levels is coupled to the cw power output
of the 10.6-pu laser oscillation (but not neces-
sarily to the @-switch power output). The 10.6-
u oscillation occurs on a transition involving
only one pair of these collisionally-coupled vi-
brational levels. The time constant involved
in this collisional coupling is such that for a

few microseconds after application of @-switched

radiation, an inversion of population may be
obtained among these vibrational levels. This
has enabled attainment of a new @-switched
laser oscillation at 4.3 u. The relaxation stud-
ies are done both in the presence of a dc dis-
charge current and without a discharge where
the steady-state level populations are at room
temperature.

In this experiment, a short sample tube is
placed within the resonator of a Brewster-an-
gle laser system with infrared transmitting
windows. An additional infrared window is pro-
vided on the side of the sample tube, which is
connected to a gas-handling system that allows
varying amounts of CO, together with other gas-
es to be introduced into the tube. The sample
tube is equipped with electrodes which allow
a dc discharge excitation when desired. The
laser discharge tube is much longer than the
sample tube; thus the gain or attenuation of
the sample tube at the laser frequency is kept
at a level considerably lower than the gain of
the laser tube. The sample tube introduces
only a small perturbation on the performance
of the laser.

Consider the laser operating @ -switched on
the (00°1) — (10°0) rotation-vibration transition
of CO, at 10.6 u [see Fig. 1(a)]. The intense
@-switch beam introduces rapid transitions
between the corresponding levels of the CO,
molecules in the sample tube. This occurs
during a very short time corresponding to the
pulse-length® of each @-switch pulse and results
in sudden changes in population of the (10°0)
and (00°1) states. After the pulse the level pop-
ulations slowly relax to their steady-state val-
ues. The change in population may be monitored
by viewing the infrared spontaneous emission
from CO, levels through the side window of the
sample tube. For this purpose, a grating mono-
chromator is placed in front of the side window,
and the output detected with a Au:Ge detector.

The rate of volume quenching and diffusion
of the (00°1) levels was studied with the sam-
ple tube at room temperature and without a
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FIG. 1. (a) CO, vibrational energy levels. (b) Rate
of volume quenching and diffusion for (00°1) level of
CO,. The triangles and circles represent data taken
on two separate occasions.
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discharge. In this case, the steady-state pop-
ulations are in thermal equilibrium at room
temperature. The @-switch pulse suddenly in-
creases the population of the (00°1) level and
results in a rapid rise in the spontaneous emis-
sion originating from this level. Observations
were made by detecting the emission band aris-
ing from the (00°1) — (00°0) transitions.* The
center of this band falls at 4.26 u. The decay
of this emission signal back to steady state is
found to be a pure exponential. Figure 1(b) gives
the measured rate of decay of this signal as

a function of CO, pressure in pure CO,. The
diffusion of excitation of the (00°1) level to the
walls of the sample tube is responsible for de-
parture from linear dependence at low pressure.
(The average diameter of the sample tube was
about 1 in.) Analysis of the curve in Fig. 1(b)
gives a rate of volume quenching for the (00°1)
level due to collisions with the ground state

CO, molecules. This is 385 sec™ mm™! cor-
responding to a cross section of 0=(3.3+0.3)
X107 ¢m®. The analysis of this curve at low
pressure gives a cross section for the self-
diffusion coefficient for diffusion of excitation
of the (00°1) state to the wall. This is 0.50 cm?/
sec normalized to one atmosphere. In this es-
timate the possibility that a collision with the
wall may not lead to immediate decay of the
excitation of the molecular vibration is not in-
cluded. This effect may be studied by varying
the wall material in the sample tube. Further-
more, the noncylindrical geometry of the tube,
caused by the presence of the side window, in-

troduces an uncertainty in the value of the dif-
fusion length. The uncertainty in the measured
value of the diffusion coefficient due to the lat-
ter source of error is about 50%. The linear
portion of the curve in Fig. 1(b), when extend-
ed, does not go through the origin. This is
caused by the radiative decay of the (00°1) lev-
el. However, to deduce from this an exact ra-
diative lifetime, the effect of self-trapping of
resonance radiation must be included.
Consider now relaxation and collisional cou-
pling between various levels in the presence
of a dc discharge in the sample tube. In this
case, the densities of the excited vibrational
levels are so large that collisions between mol-
ecules in the excited vibrational levels play
important roles. Thus, the relaxation of a lev-
el depends on the densities of a number of col-
lisionally-coupled excited levels and hence is
a complex function of the discharge current.
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The collisional coupling between the antisym-
metric stretching vibrational levels may be
studied by observing the spontaneous emission
arising from the nearly overlapping emission
bands (00v) - (00 v—1) which fall at around 4.4
. The monochromator may be tuned in this
region to allow observation of emission orig-
inating predominantly from various vibration-
al levels.? The 4.4-u emission bands were
studied while the sample tube was subjected

to cw or @-switched 10.6- 1 laser radiation.
Using a narrow @-switch pulse, one finds that,
as the population of the (00°1) is suddenly changed,
the populations of the higher vibrational levels
also change appreciably, but with a time delay.
The change in spontaneous emission signal due
to population changes in the higher vibration-
al levels is roughly half as large as the steady-
state spontaneous-emission signal in the absence
of 10.6-pu laser radiation. The time delay in
the spread of excitation among these levels is
less than ten microseconds. This was measured
in a discharge mixture of He-N,-CO, with near
optimum gain at 10.6 pu corresponding to pres-
sures in the millimeter range. This indicates
that a sizable rate of excitation of the higher
(00%) levels originates from collisions involv-
ing (00°1) levels. Such an excitation may arise
from collisions between two vibrationally ex-
cited CO, molecules (or an excited CO, and an
excited N, molecule) causing further excitation
of one and de-excitation of the other.

To inspect the importance and consequences
of the above collisional couplings, it is impor-
tant to know the relative populations of adja-
cent (00%) vibrational levels in the discharge
tube. To establish this, the intensity profile
of the nearly overlapping emission bands of
the (00%) - (00° v—~1) transitions was analyzed
in detail. This was studied with the sample
discharge tube subjected to 10.6-u cw radia-
tion as well as without the laser irradiation.

It was found that levels as high in energy as

v =4 were heavily populated. However, the
populations of the higher energy levels fall dras-
tically. Furthermore, in the presence of cw
10.6- u radiation, the intensity profile of all
of these emission bands decreased by about

a factor of 2. Also, the relative intensity dis-
tributions of the emission bands remained the
same with or without cw laser irradiation.
Lastly, the steady-state intensity distribution
of the 4.4- 11 emission bands corresponded to
a relatively high positive vibrational temper-
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ature.® Accordingly, the ratio of the steady-
state populations of two adjacent (00%) levels

is close to unity®; but not so close as to allow’
cw laser oscillation on the (00v) -~ (00 v—1) tran-
sitions. (In these measurements, the effect

of self-trapping of the (00°1) - (00°0) transition
was allowed for.) The presence of a hot vibra-
tional temperature and the existence of tight col-
lisional coupling between higher vibrational
levels have a number of important consequences:

(1) While the unsaturated gain of the 10.6-u
transition is determined only by the populations
of the (10°0) and (00°1) levels, the cw laser-
output power, which corresponds to saturated
gain at the laser transition, is determined by
the populations of a number of additional vibra-
tional levels. The energy stored in the popu-
lations of levels as high as (00°4) is coupled
to the cw 10.6- 1 laser output, and each of these
levels contributes appreciably to the total 10.6-
U laser power.

(2) The steady-state distribution of the pop-
ulation among the (00%) levels is noninverted,
preventing oscillation at (00v) — (00 v-1) tran-
sitions. However, immediately after applica-
tion of a @-switch 10.6-u laser pulse, the pop-
ulation of (00°1) is suddenly decreased, and
an inverted population may be obtained among
the low-lying rotational states of adjacent (00v)
vibrational levels. This occurs in a time on
the order of a few microseconds determined
by the relaxation time discussed above. The
10.6-u @-switch pulse is capable of “switching
on” sizable gain at a different frequency. A
search was made for new laser oscillations
induced by @-switching of the 10.6-u transi-
tion. A strong pulse was detected in a He-CO,-
N, discharge at 4.350+0.002 u corresponding
to the P(31),(00°2) — (00°1) transition. Weak-
er transitions corresponding to P(33)-P(47)
lines were also observed (details of the @-switch
system used will be described elsewhere).

The over-all behavior of the 4.3-u pulses fol-
lows exactly the mechanism described above;

if the pulse length of the 10.6-y oscillation is
increased to a value in excess of about 10 usec,
the 4.3-u pulse occurs only at the onset of the
10-p pulse, and the 4.3 pulse length cannot

be extended by any means.

(3) In a @-switch system where the 10.6-u
laser transition alone is allowed to oscillate,

the population of the higher vibrational levels
are no longer coupled to the laser field. This
is because the duration of a pulse is general-
ly less than the time constant of the collision-
al coupling discussed above.

Other excited vibrational levels® are also
tightly coupled to the CO, laser levels. Addi-
tional studies can also be made by observing
the influence of 10.6-y @-switch radiation on
the emission originating from excited bending
modes or the symmetrical stretching mode.

*Work supported by National Aeronautics and Space
Administration and Air Force Cambridge Research
Laboratories.
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In an optimum system, the pulse length measured
with a properly matched fast detector (Au:Ge) was
about 20 nsec, in complete agreement with an indirect
determination discussed in Refs. 1 and 2. However,

a pulse width of a few hundred nsec is sufficiently
short to allow unambiguous determination of relevant
relaxation times discussed here.

‘Because of rapid thermalization of the rotational lev-
els, the entire 4.26-u band appears in fluorescence.
Accordingly, the identities and the number of simultan-
eously oscillating rotation-vibration transitions of the
Q-switch laser are unimportant. This is valid for all
the experimental conditions discussed throughout this
paper.

5A number of additional low-lying emission bands
arising from (vy,v,,v3) = (v4,v,,v3—1) transitions are
also present and fall in the 4.4-u region. Their inten-
sities are dependent on the conditions of the discharge
and various partial pressures in the COy-Ny-He mix-
ture.

6An additional proof for the presence of a large posi-
tive temperature within the low-lying (00%) levels is:
For a few microseconds after a @-switch pulse, the
transient populations of the (00°2) and (00°1) levels are
very nearly inverted. (See the later discussion in the
text.) This occurs when the population of the (00°1) lev-
el is suddenly decreased by a factor of 2. From this,
one obtains a steady-state population ratio given by
7(002)/7(001) >, or a vibrational temperature, T
>3000°K. The exact determination of this temperature
from an analysis of the (00v) —~ (00v~1) emission bands
is somewhat obscured because of the overlapping of a
number of additional bands from (vy,v,,v3) =~ (v4,vy,
vz—1) transitions. These additional levels are also
found to be coupled to the (00°1) level.
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