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inhomogeneous term and the purely geometric kernel K. We believe this is better done for specific
cases where the spin and isospin symmetries of the interactions can be directly utilized to simplify
the geometric structure at an earlier stage, and do not attempt to give a general formula here.

We wish to emphasize that these are now well-defined integral equations in two continuous variables
with a maximum of 3(I.+ I) xmin(2J+ I, 2L+ I) components, and that the dynamical singularities of
the two-body interactions have been explicitly separated, insofar as is physically allowable, from
the purely geometrical coupling between the three interacting subsystems.

We have benefited greatly from several critical comments and discussions with colleagues at the
Linear Accelerator Center, and in particular from continuing advice and criticism by M. Bander
and J. Gillespie.
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Interest in the two-particle Bethe-Salpeter
(B.S.) equation' has been revived recently. '
One reason for this is that the separable ap-
proximation to a generalization of the Faddeev
equations' gives rise to such an equation, al-
beit for resonance-particle scattering. ' But
even in the two-particle scattering region this
equation includes inelastic effects which can-
not be taken account of by N/D equations; nor
can they be included if the Bethe-Salpeter ker-
nel is replaced by the Blankenbecler-Sugar
kernel. '

There are two main difficulties to be faced
in attempting a numerical solution to the B.S.
equation: a large number of variables and nu-

merous singularities of the kernel. The num-
ber of variables can be reduced to a minimum
of two by a particle-wave expansion; therefore,
it is necessary to remove the singularities be-
fore reasonably accurate computations can be
performed on present computers. In this Let-
ter we wish to give a systematic and practical
method to remove completely all the singular-
ities in the B.S. kernel. This is an extension
of Wick rotations into the elastic, simply in-
elastic, etc. , regions which takes account not
only of displaced poles but also of displaced
cuts. We start with the full B.S. equation for
scattering of two spinless particles of mass
m via the exchange of a particle of mass p:

2 pr 2 2 —1~(q, q";p)=~ [(q q) -~ 1 +-;fd q [(q-q') -u ) [(p q') — ] '[(p+q')'-- ']-'M(q'q" p)

We take p =(—,vs, 0), where Ks is the invariant
total energy. We work in momentum space as
distinct from coordinate space, since renormal-
ization and three-body equations are handled
more naturally in P space.

In order to perform a Wick rotation we study
the singularities of the integrand in (I) in the
variable q, ' [q'=(q, ', q'), etc.]. We evidently
have six poles arising from the three propagators
a«. ' =+p.+ (q" + m')"', q. ~ [(q-q')'+ ~'1"'
(where the Feynman ie is used). Let us call
the first set of propagator poles the direct poles,
the second set exchange poles. There are al-

so singularities in qp arising from the function
M(q'q"; p) itself. These singularities are com-
posed of two branch lines starting at -P,+ [q'
+ (m+ p)']"2 and going to +~ just below the real
axis, and from p, -[q"+ (m+ p)']' ' to -~ above
the real axis. They arise from pinches between
the first- and second-type poles mentioned
above. These branch lines contain higher branch
points at qp' =+&a~, &u~=pp-[q" + (m+xp. )']+'.
We will refer to these cuts as inelastic cuts.

Most of these singularities will be removed
after the contour of integration in qp' is rotated
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counterclockwise to the imaginary axis and

M(q, ) is analytically continued to the imaginary
axis in q, . This rotation may pick up residues
from displaced poles and discontinuities from
cuts protruding into the first and third quadrants.
It will not remove true singularities (pinches)
if their position is independent of q, . We must
consider the location of these singularities be-
fore rotation, in particular, their dependence
on q„p„and Iq' I. They come from pinches
between two direct poles, direct and exchange
pole, etc. There are evidently five types which
we denote by dd, de, di, ei, and ii.' The par-
ticular pinches which can occur in a given range
of p, =-,'s' ' are given in Table I. We note that
the de and ie pinches generate the higher branch
points on the inelastic cuts; also that dd, di,
and ii do not depend on q, but only on p, and
lq' I. Thus they cannot be removed by the above
rotation while the de and ie pinches are.

If we are only interested in the bound-state
region there are no such displaced contributions,
neither poles nor cuts. In the elastic region
[(2) of Table I] and for all "higher" P, there
is a displaced pole d. There is also a pinch
dd singularity which is independent of q, and
so not removed by rotation; it will have to be
removed by subtraction, as discussed elsewhere. '~'

In region (3) there is the additional di pinch

which is not removed by rotation; it is the log-
arithmic singularity generated by the exchanged
particle. It will have to be removed by a fur-
ther subtraction. In region (4) the new phenom-
enon of a displaced cut occurs; the contribution
from this cut cannot necessarily be neglected.

The contribution coming from this displaced
cut which persists from region (4) onward can
be taken in account correctly by using an inte-
gral representation (EAR)" for M, embodying
the q, analyticity. The EAR representation is

M(q,q;,q") =M, + I dt0% 0 0
~ t q

m+(t, q;p, q")
t-q,

where n+ (q, P,) = -P, + [q'+ (m+ p, )2j"2, n

-n+, and Mo is the first Born term. We insert
the EAR in Eq. (1) and perform the q, ' integra-
tion. The discontinuity of the resulting inte-
grals in qo is taken and then its partial-wave
projection is performed. The resulting equa-
tions for m+I, with m=(m+t, m I) are

rn=m'+ K rn

where

2

8m q K +K )

Table I. The table shows, in columns 1 and 2, position and qo, qo dependence of the singularities which can occur
in the different regions of pp. Column 3 shows the effect of the Wick rotation on the singularities. Column 4 lists
poles and cuts protruding into the first quandrant, n, s, t count the number of exchange particles present.

Range of po Pinches

Effect of Wick
rotation on

singularities
Displaced poles

and cuts

(i) p, &m

{bound state)
None Removes all None

(2) m &p, &m+2@,
{elastic)

p (qI 2 +m 2
)

1~ 2

de p0
——q0+([q' +(m+np) ]

+ [Pq ~q )2+~2]112)

Not removed
Removed

Displaced
d pole

(3) m + ~p &po &m +p p (q'2 ym2)V2
I2+ 2]1i'2+ I' )'2+ (m+np)2]1 2

as above
de

Not removed
Not removed

Removed

(4) m+p &po dd
idil

as above
de
g8 (

2p, = [q'2+ (m+sp, )2]"2
+ fq/ 2 + (m + tp )2 ]1/2

As above

Not removed

Displaced
d pole and
z cut
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and

P (z )8(1-z )l 1 1
K+ S~p, (p, -~)(p,-~+ &)

P (z )8(1-z 2)

8(dpo(pa+ (d)(pa+ (d t)-
P (z )8(1-z 2)

++ ' [(t-p,)'-~'t[(t+ p,)'-~'l'

Here we have set ~'= q"+ m', and

2pp &z — p 2+ q2+ q~2+ p2
Z

(5)

remains; there is a singularity in q' in range
(2) when p, =(u, ~2=q'2+m2. It arises from
the dd pinch; we remove it here by a standard
subtraction" in the spectral representation.
The further singularities arising in K are in
regions (3) and (4) at t = +p, + (u. These can be
removed by further subtractions, and the re-
sulting coupled integral equations have kernels
with no singularities in them (are locally bounded
functions with suitable decrease at infinity). "
We will present more details, applications,
and numerical calculations in different regions
elsewhere.

Qq=qo+po-~,

a =q-p-
a, =q, -t,

with equivalent expressions for K and K +.
Also

8(1-,')P, (z,)
m '=, —dqdt!

8(1-z 2)P (z )

8p,~(p;)[(p; & -q, ") -&' ~

8 (1 z )P (z )

'2~ [(p,+~ +q,")'-~'l[(p.-~'-q.")'-~') '~'

where a, =q,-~'-q, ", ~"= (q'-i")'+ u .
The poles of the kernels in (5) are the only

singularities left in the equations for the m
functions. We observe that they do not depend
on the external variables q„q and so can be
removed by the subtraction method developed

earlier by one of us. We see that the EAR

has explicitly performed the Wick rotation;
it has removed all the singularities depending
on q„j. In energy range (1) no singularity
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