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It is shown explicitly that for finite-range two-body forces which contribute significant
interactions in only I +1 orbital angular momentum states, the Faddeev equations for the
three-body T matrix with total angular momentum J can be reduced to well-defined inte-
gral equations for functions of two continuous variables with 3(L + 1)x min(2J+1, 2L+ 1)
components. Hence numerical calculation for realistic interactions, and analytic investi-
gation of the dependence on two-body dynamics (which is explicitly separated from the
geometrical part of the problem), become possibl.

Although the nonrelativistic three-body problem has been given a well-defined mathematical struc-
ture by Faddeev' and reduced from six to three variables by Omnes, ' the resulting equations are still
so formidable that no one has yet attempted an exact solution for any specific problem using local
two-particle interactions. We will show in what follows that in the case of interest for strong inter-
actions, in which the finite range of the two-particle (pairwise) interactions insures the dominance

of a finite number of two-particle angular momentum states, these equations can be reduced to cou-
pled integral equations in two variables. These equations have a sufficiently simple structure to of-
fer a reasonable prospect of numerical solution in physically interesting cases. Further, the reduc-
tion explicitly separates the geometrical (kinematical) part of the problem from that part which de-
pends on two-body dynamics, and provides a useful starting point for discussions of the analytic struc-
ture of the dynamical part of the three-body problem.

The original Faddeev equations give the three-body transition matrix T for the transition from a
state p, to a state p (z = 1, 2, 3) as the sum of three terms T(') expressed in terms of integrals over
two-body transition matrices t(z) in the same nine-dimensional Hilbert space. Omnes has shown that

by changing variables to the three energies wz
——pz'/2m, the total momentum P =P.p. = 0 =P', the

total angular momentum J', its projection Mg on a space-fixed axis, and its z component M along
a body-fixed axis in the plane of the momentum triangle, the J component of these operators can be
written in the four-dimensional space of ~ = (&u„~„&u,) and M (-J-M & J). By taking matrix elements
of these operators in this space, he finds that
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i, j,0, cyclic on 1, 2, 3. The physical transition matrix is to be obtained by solving these equations
and taking the limit z -E+io with F. =~, +z, +~, =(d, '+~, '+~, '=F, '. Although the 5 functions in the
kernels remove one of the integrations, these form a set of 3(2J+ 1) coupled integral equations in
three continuous variables, as will become rapidly apparent to anyone who attempts to set them up
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for numerical computation; so far as we can see, this exceeds the capacity of any existing computer
In order to reduce the problem further, we assume that the two-body (off-shell) transition matrix

t(') for the interaction between the jk pair contains significant interactions in only L+ I orbital angu-
lar momentum states. We make use of the addition theorem for spherical harmonics to express the
dependence on the angle between the initial center-of-mass momentum q-k and the final momentum

q-k', in terms of the angle y; between qjk and pi, the angle ai between p; and any arbitrarily chosen
body-fixed axis in the plane of the triangle, and the similarly defined angles y,.

' and e for the final
state. The azimuthal integration over the angle M defined by Omnes can then be performed, and we
find

L
'
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l=0 j k
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r. =(m +m2+m )/(m. +m„).

Here tl (q&k' /2pjk, q&k /2pjk, k /2tL&k) are the usual partial-wave transition amplitudes normalized(i) . ,2 . 2 . 2

to reduce to exp(ill) sin5 /k on-shell. We write the arguments of ti(~) in terms of the energy variablesl
in order to emphasize the kinematic fact that tMiM(i)(&u', &u) depends on ~' only through the combina-
tion F.'=~, '+co, '+~, ', and the energy of the noninteracting particle &i'. Aside from trival factors,
tM&M(')(~', ~) is both the kernel and the inhomogeneous term of the Faddeev equations. As a result,
the solution, TMIM ' (&u', ~), depends only on the pairs of variables E, ~i and E', &ui'. Furthermore,
the dependence on the magnetic quantum numbers M and M' occurs only through geometrically known

separate factors. We exhibit this behavior explicitly by defining
L min(J, l')

T, (&u', m) = ) /, (2l'+ 1), ', d, , (-n. ')P, (cosy ')F, , . (E', &u. '). (3)
l' = 0 X' = -min(J, l')

The index P in the amplitude Fi~~~P(')(E', wi') is written to remind us that it will depend parametri-
cally on z, P = 0, J, MJ, M, and &u through the inhomogeneous term and (as we will see) on z only
through the kernel. Our reduction to two variables will now be complete, provided only we can find
an appropriate transformation of variables in the integrations.

The change of variables must be made with some care; the variable E' is common to each of the
three equations, but the variable wi is different in each. However, this different variable on the left
is precisely the variable &j or +k which must be used differently in the two integrations on the right
if we are to preserve consistency. Again making use of the kinematics, we note that the variable
orthogonal to E, wj is the angular function cosy& defined above, while for the k term we require E,

cosyk. Explicitly, the transformations in the ith equation are
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for the term with s =j. The variable transformation for the term with s =k can be obtained by letting
i-j, j-k, and k-i on both sides of Eq. (4). The range of e " is still from 0 to ~ if r&e&" ~ E"«,
while cosy&" can vary from -1 to 1 independent of the energies. However, the argument of the 5 func-
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tion does not necessarily lie in this range, which puts further obvious kinematic limits on the E" in-
tegration. With this caution, the substitution of Eqs. (2) and (3) in Eq. (1) can now be carried through,
and we find that
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(m. +m )
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where there are two 0 functions in the kernel which further restrict the F," integration. We note that
the amplitudes depend parametrically on ~ and M through known geometric functions in the inhomo-

geneous term and that the sum over M" has disappeared. Explicitly,
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where s' =k if s =j, or s' =j if s =k. Doing the integration over the delta function and the sum over
M" gives

(m, +m. )' ' ( m.m e"

sl

-e E"-r e"- I I e I+I
s & m, j i t, m, (m. +m, ) j

(I» + gff) (

(2l" + 1)(l"-g")!
P, (cosy. [E",e", cosI' (e. ', E",e")])l' 2 S 2

g 1/ JxP (cosI' (e.', E",e"))d (o. ."-a "),
I Il s i ' ' A'X" i s

where cosI's is the value of cosys" determined by the delta function in Eq. (6) and is given by
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for s =j and the negative of this expression for s =k. Although we have carried through the algebra
here only for the spinless case, it is obvious that the proof can be carried through immediately for
arbitrary spin and isospin by introducing the appropriate spin-angular functions in the decomposi-
tion of the two-body t matrices, the only effect being to complicate the parametric structure of the
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inhomogeneous term and the purely geometric kernel K. We believe this is better done for specific
cases where the spin and isospin symmetries of the interactions can be directly utilized to simplify
the geometric structure at an earlier stage, and do not attempt to give a general formula here.

We wish to emphasize that these are now well-defined integral equations in two continuous variables
with a maximum of 3(I.+ I) xmin(2J+ I, 2L+ I) components, and that the dynamical singularities of
the two-body interactions have been explicitly separated, insofar as is physically allowable, from
the purely geometrical coupling between the three interacting subsystems.
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Linear Accelerator Center, and in particular from continuing advice and criticism by M. Bander
and J. Gillespie.
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Interest in the two-particle Bethe-Salpeter
(B.S.) equation' has been revived recently. '
One reason for this is that the separable ap-
proximation to a generalization of the Faddeev
equations' gives rise to such an equation, al-
beit for resonance-particle scattering. ' But
even in the two-particle scattering region this
equation includes inelastic effects which can-
not be taken account of by N/D equations; nor
can they be included if the Bethe-Salpeter ker-
nel is replaced by the Blankenbecler-Sugar
kernel. '

There are two main difficulties to be faced
in attempting a numerical solution to the B.S.
equation: a large number of variables and nu-

merous singularities of the kernel. The num-
ber of variables can be reduced to a minimum
of two by a particle-wave expansion; therefore,
it is necessary to remove the singularities be-
fore reasonably accurate computations can be
performed on present computers. In this Let-
ter we wish to give a systematic and practical
method to remove completely all the singular-
ities in the B.S. kernel. This is an extension
of Wick rotations into the elastic, simply in-
elastic, etc. , regions which takes account not
only of displaced poles but also of displaced
cuts. We start with the full B.S. equation for
scattering of two spinless particles of mass
m via the exchange of a particle of mass p:

2 pr 2 2 —1~(q, q";p)=~ [(q q) -~ 1 +-;fd q [(q-q') -u ) [(p q') — ] '[(p+q')'-- ']-'M(q'q" p)

We take p =(—,vs, 0), where Ks is the invariant
total energy. We work in momentum space as
distinct from coordinate space, since renormal-
ization and three-body equations are handled
more naturally in P space.

In order to perform a Wick rotation we study
the singularities of the integrand in (I) in the
variable q, ' [q'=(q, ', q'), etc.]. We evidently
have six poles arising from the three propagators
a«. ' =+p.+ (q" + m')"', q. ~ [(q-q')'+ ~'1"'
(where the Feynman ie is used). Let us call
the first set of propagator poles the direct poles,
the second set exchange poles. There are al-

so singularities in qp arising from the function
M(q'q"; p) itself. These singularities are com-
posed of two branch lines starting at -P,+ [q'
+ (m+ p)']"2 and going to +~ just below the real
axis, and from p, -[q"+ (m+ p)']' ' to -~ above
the real axis. They arise from pinches between
the first- and second-type poles mentioned
above. These branch lines contain higher branch
points at qp' =+&a~, &u~=pp-[q" + (m+xp. )']+'.
We will refer to these cuts as inelastic cuts.

Most of these singularities will be removed
after the contour of integration in qp' is rotated

218


