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It is shown that for both the Hartree-Fock and Bogoliubov models of interacting bosons
associated with the disappearance of the Bose-Einstein condensation at a temperature T~,
the specific heat C y has a square root singularity, 'C y -A(T~-T), and the superfluid
density pS is discontinuous, wit p& T —

p& T —0 -B —T for temperatures T—T
-0. Except near T =T& the theoretical and experimental results for p& are in good agree-
ment.

It is well known that in an ideal (Bose-Ein-
stein) gas of He' atoms, the specific heat Cy
is continuous but BCy/&T is discontinuous at
TI= 3.13'K.' By contrast, the measured spe-
cific heat of liquid He is logarithmically sin-
gular at T~ = 2.18 K.' Because of calculation-
al difficulties inherent in studies of phase tran-

sitions, little progress has been made in show-
ing that the introduction of interactions between
atoms leads to agreement between the predict-
ed and observed values of Cy. ' ' We report
here that for both the Hartree-Fock and Bogo-
liubov models of a system of bosons interact-
ing via repulsive two-body potentials, Cy has
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a square-root singularity, CV -A (Tc T—)
as T is raised to a transition temperature Tz.
Further, for the Hartree-Fock model, we have
calculated the superfluid mass density, ps,
as a function of temperature, and it is in good
agreement with the experimental results, when

Tc = T~, except for temperatures in the imme-
diate vicinity of Ty.

Consider a system of N bosons in a cubic
container of volume V, where the particle den-
sity is n(He') = (3.58 A) ' and each particle has
mass m(He') = 6.64x10 "g. We assume that
the particles interact via a central, repulsive,
two-body potential possessing a Fourier trans-
form v(p). In the following, s it suffices to spec-
ify the form of v(p) for small P:

(p)= 0[I-(P'/P ')],
0

In the Hartree- Fock approximation the Ham-
iltonian of the system is (we choose units so
that k= 1)

K =Q( —p)N

+(2V) ' Q [v +v(p p')]N N-

p, p'(&p)

where

e =(P'/2m+)+n v,
p

m*=m(1-2mnv /P ') ') m.
0 c

(3)

The equilibrium occupation number of this state
ls

(N )=[exp(Pe )-1]
p p

where 1/P =k BT.

(5)

+(2V) 'v Q N ',
0 p p'

w here p is the chemical potential, andN-=a ~a-
p p p

is the number operator for the single-particle
state V +'exp(ip r) satisfying periodic bound-
ary conditions with respect to V. As shown
elsewhere, ' for temperatures below some crit-
ical value Tc it is possible to choose p, so that
in the volume limit [N, V-~, N/V =n(He~)],
the excitation energy of the p= 0 single-parti-
cle state vanishes, and thus the thermal equi-
librium occupation number, (a, a,)=—n,V, of
this state is O(N) (Bose-Einstein condensation).
With this choice for p, and v(p) as given in
(1), the excitation energy for a state p(c0) is

The condition that the total number of parti-
cles is N yields an implicit equation for n„

n, =n -X-'F„,(pn,v,),

F (z) = — dx
v I'(o')» exp(x+ s)-I'

(6)

We have solved Eq. (6) analytically for those
cases where n =m&v0(mkST) '«1, ' and o.) 10, as well as numerically for intermediate
values. In all cases studied, the curve of n, /
v vs T displays the same general behavior as
is shown in Fig. 1. As the temperature is raised
form T = 0, the quantity n, /n slowly decreases
from unity; and at a temperature T~, which
depends upon m*/m andnv0/(k@TI), n0/n drops
discontinuously to zero. Furthermore, n0(T)
—n0(Tc-0)o. D(Tc-T)' ' for 0(Tc T» Tc —To
obtain the curve in Fig. 1 we have chosen s,
= 4ma/m, the Fermi pseudopotential for a hard
sphere of diameter a = 2.2 A, ' and Pc so that
Tc =Ty (m*/m= 5.52). Also shown in Fig, 1

are graphs of the superfluid fraction ps/p, where

ps is the superfluid mass density and p = mn,
as obtained experimentally and by the formu-

p (T)/p=mn (T)[m~-(m+ —m)n (T)] '. (7)S 0 0

The theoretical curve has a discontinuity at
T& and, as for n0(T), p~(T)-ps(T~-0) o-B(T~
-T)"' just below Ty. This power-law behav-
ior for ps may be compared with the recent
finding of Clow and Reppy" whereby ps(T)- C(Ty
-T)&, y=0. 67+ 0.03. Except near Ty the two
curves are in moderately good agreement.

!.0—
0.9-
0.8—

0.7-
0,6-
0.5—

0.2-
O.l"

I I

I.O I.I I.2 I.3 I.4 I, 5 1.6 I.7 I,8 I.9 2.0 2.1 (2.2

T( K)

FIG. 1. Experimental results for the superfluid
fraction p&/p, and p&/p and Bose-Einstein condensa-
tion fraction no/n versus temperature for the Hartree-
Fock model when m *jm = 5.52 and n vo (kBTg) = 3.5.
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The internal energy of the system can be
obtained by replacing the operator Np in the
expression for XH F by its thermal average,
(Np) of (5), and by omitting the terms pgp(Np).
Using Eg. (1) for v(p), the internal energy per
unit volume is

U/V = 2(PX') 'F,i,(Pn p o) + (n'-m20 )v 0.

Because of the appearance of the terms con-
taining no, the dominant behavior of CV= (BU/
BT)V N for 0&Tc-T «Tc is given by

7

C - ——',Vv (3n —n )(Bn /BT) ~(T -T) 'I'. (9)0 0 V, N c

Cy

ks

In Figs. 2(a) and 2(b) we have plotted the re-
sults of the numerical evaluation of the com-
plete expression for CV as a function of T for
the same choice of parameters v, andPc' as
were used to obtain pS/p of Fig. 1.

We have extended the above calculations to
a generalized version of the Bogoliubov mod-
el" described by

I I I I I I I

.2 .4, .6,8 I.O 1.2 1.4 1.6 1.8 2.0 2.2 24
T( K)

IQ I I I I 1I I & I I I I I I

X =K y 2n Q v(p)(-a a +a a ), (10)
B HF 0, p -p -pp'

p(w0
IO

V

w here n, = (a, a,)/V, the ensemble average be-
ing taken with respect to XB. For this model
when nv0 «kHTI, we find that Tc/T1= 1+0.15nv0
x (k &Ti) ' and 10

I IO-' IO T -T 'K
X

n (T -0)/n = 0.23nv /(k T ),0 c '
0 B I' FIG. 2. (a) Specific heat C~ as a function of temper-

ature for the Hartree-Fock model with the same pa-
rameters as used in Fig. 1. (b) Log(Cy) vs log(T~ —T)
for 0 &Tp„—T «Tg showing that Cg~ (Tg—T) ~ in this
region. The dashed straight line has slope -2.

n (T)-n (T -0)
0 0

-1.17n(nv /k T )'I'[(T -T)/T ]'~',

for temperatures 0 & Tc -T «Tc. ' To obtain
this result we have used the relation'

of interacting bosons, give new impetus to Lon-
don's idea' that the condensation of a macroscop-
ic number of particles into a single quantum
state plays a primary role in effecting the un-
usual properties of He II.

(a a )= 2[(f /e ) coth(2P& )-1],
p p p p p

p2 p2 p2 ) j/2

f = +n v, e = = +n v ~, (12)

and, for simplicity, we have assumed v(p)=v„
so that m*= m. The similar temperature be-
havior of na/n for both the Hartree-Fock and

Bogoliubov models also applies to CV just be-
low Tc. In particular, for the Bogoliubov mod-
el CV T' Oand (Tc-T) ~' for T& Tc and 0 Tc
-T «Tc, respectively.

The present results for CV and pg, although
obtained for two simplified models of a system
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R. ]3rout, Phys. Rev. 131, 899 (1963), in a treat-
ment of the many-boson system for T &Tl which utilizes
a simplified version of the Hartree-Fock approximation,
finds that C~ has a finite discontinuity at TI. If we
write XH F =Rp+3(', where XO=Zp((p /2m)-p]Np is
the ideal gas Hamiltonian, then in effect Brout has
studied the Hamiltonian Q+ QC')p where ( ~ )0 de-
notes the ensemble average taken with respect to Q.

4T. D. Lee and C. ¹ Yang, Phys. Rev. 112, 1419
(1958), studying a model Hamiltonian closely related
to our ~ of Eq. (10), find that Cyhas a finite dis-
continuity at TI. We believe that their result is due
to an oversight in the analysis of the temperature be-
havior of a parameter $ which is the counterpart of
our np/a. In particular, we believe that they set f„=1
in the right-hand side of their Eq. (32) and thus failed
to find that $ vs T is a double-valued curve for TI &T

&T~, with the upper branch being physically relevant.
Hence, the discontinuity and power-law behavior of
( (T)-( (T-0) were overlooked. A similar oversight
is to be found in a description of the Lee-Yang work
by K. Huang, in Studies in Statistical Mechanics, ed-
ited by J. de Boer and G. E. Uhlenbeck (North-Holland
Publishing Company, Amsterdam, 1964), Vol. II, P.
A, Eqs. (5.25), (5.27), and (5.29).

M. Luban, Phys. Rev. 128, 965 {1962)studied the
pair Hamiltonian model and found that the entropy is
discontinuous at TI.

6A careful analysis shows that the replacement of
v(p) by the right-hand side of Eq. (1) leads to negligible
errors when m*ne0{mkgTI) is large compared with

unity, or, when small, if P& (2m*k~T~) ~& 3. In any
event our conclusions concerning the behavior of C„
and p& near the phase transition are in no way affected.

TThe discussion in W. D. Grobman and M. Luban,
Phys. Rev. 147, 166 (1966), Sec. VI, Appendix C, is
relevant to this matter.
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887 (1966).
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~The calculations of no/n and C p are readily per-

formed using Eqs. (111), (112), (156), and (157) of
Ref. 5.
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