VOLUME 17, NUMBER 4

of P. Lazay and J. Lastovka who engineered and assembled the light detection system. We are indebted to Dr. E. I. Gordon of the Bell Telephone Laboratories for help with the single-mode laser. We also thank Dr. S. Yip for several stimulating discussions and the unpublished computation of the spectrum for Maxwell molecules.

*This work was supported in part by the Advanced Research Projects Agency under Contract No. SD-90 and by a grant from the Sloan Fund for Basic Research in the Physical Sciences at the Massachusetts Institute of Technology.

[†]National Science Foundation Cooperative Fellow. ¹M. Nelkin and S. Yip, Phys. Fluids <u>9</u>, 380 (1966). ²G. Benedek and T. Greytak, Proc. IEEE 53, 1623

(1965).

³W. E. Lamb, Phys. Rev. 134, A1429 (1964).

⁴P. Connes, J. Phys. Radium <u>19</u>, 262 (1958).

⁵E. H. Eberhardt, ITT Industrial Laboratories Research Memo No. 407, 1964 (unpublished).

⁶S. M. Rytov, Zh. Eksperim. i Teor. Fiz. <u>33</u>, 514 (1957) [translation: Soviet Phys.-JETP 6, 401 (1958)];

R. Pecora, J. Chem. Phys. <u>40</u>, 1604 (1964).

⁷L. Van Hove, Phys. Rev. <u>95</u>, 249 (1954).

⁸J. M. J. Van Leeuwen and S. Yip, Phys. Rev. <u>139</u>, A1138 (1965).

⁹S. Yip and M. Nelkin, Phys. Rev. <u>135</u>, A1241 (1964).

¹⁰A. D. May, E. G. Rawson, and H. L. Welsh, in Phys-

ics of Quantum Electronics, edited by P. L. Kelley, B. Lax, and P. E. Tannenwald (McGraw-Hill Book Company, Inc., New York, 1965), p. 260.

¹¹Sound velocities have been measured in gases under pressure by stimulated Brillouin scattering: E. E. Hagenlocker and W. G. Rado, Appl. Phys. Letters <u>7</u>, 236 (1965); D. I. Mash, V. V. Morozov, V. S. Starunov, and I. L. Fabelinskii, Zh. Eksperim. i Teor. Fiz. – Pis'ma Redakt. <u>2</u>, 562 (1965) [translation: JETP Letters <u>2</u>, 349 (1965)]; D. H. Rank, T. A. Wiggins, R. V. Wicks, and D. P. Eastman, J. Opt. Soc. Am. <u>56</u>, 174 (1966) and by spontaneous Brillouin scattering: D. P. Eastman, T. A. Wiggins, and D. H. Rank, Appl. Opt. <u>5</u>, 879 (1966).

¹²For a discussion of the thermodynamic interpretation of spectra in the hydrodynamic region, see I. L. Fabelinskii, Usp. Fiz. Nauk <u>63</u>, 355 (1957) [translation: Soviet Phys.-Usp. <u>63</u>, 474 (1957)].

¹³R. Mountain, Rev. Mod. Phys. <u>38</u>, 205 (1966).
¹⁴Low-frequency parameters taken from S. Chapman and T. G. Cowling, <u>The Mathematical Theory of Non-Uniform Gases</u> (Cambridge University Press, Cambridge, England, 1952); and <u>American Institute of Physics Handbook</u> (McGraw-Hill Book Company, Inc., New York, 1963), Sec. 3d.

¹⁵S. Ranganathan and S. Yip, Phys. Fluids <u>9</u>, 372 (1966).

¹⁶P. F. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).

 ${}^{17}\alpha$ was computed from the viscosity using Eq. (13) of Ref. 9. The viscosity of Xe was found in Chapman and Cowling, see Ref. 14.

BOSE-EINSTEIN PHASE TRANSITION IN AN INTERACTING SYSTEM*

Marshall Luban

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania

and

Warren D. Grobman[†]

Department of Physics, Princeton University, Princeton, New Jersey (Received 14 June 1966)

It is shown that for both the Hartree-Fock and Bogoliubov models of interacting bosons associated with the disappearance of the Bose-Einstein condensation at a temperature T_c , the specific heat C_V has a square root singularity, $C_V \sim A(T_c - T)^{-1/2}$, and the superfluid density ρ_S is discontinuous, with $\rho_S(T) - \rho_S(T_c - 0) \sim B(T_c - T)^{1/2}$ for temperatures $T \rightarrow T_c$ -0. Except near $T_c = T_\lambda$ the theoretical and experimental results for ρ_S are in good agreement.

It is well known that in an ideal (Bose-Einstein) gas of He⁴ atoms, the specific heat C_V is continuous but $\partial C_V / \partial T$ is discontinuous at $T_I = 3.13^{\circ}$ K.¹ By contrast, the measured specific heat of liquid He⁴ is logarithmically singular at $T_{\lambda} = 2.18^{\circ}$ K.² Because of calculational difficulties inherent in studies of phase tran-

sitions, little progress has been made in showing that the introduction of interactions between atoms leads to agreement between the predicted and observed values of C_V .³⁻⁵ We report here that for both the Hartree-Fock and Bogoliubov models of a system of bosons interacting via repulsive two-body potentials, C_V has a square-root singularity, $C_V \sim A (T_C - T)^{-1/2}$, as *T* is raised to a transition temperature T_C . Further, for the Hartree-Fock model, we have calculated the superfluid mass density, ρ_S , as a function of temperature, and it is in good agreement with the experimental results, when $T_C = T_\lambda$, except for temperatures in the immediate vicinity of T_λ .

Consider a system of N bosons in a cubic container of volume V, where the particle density is $n(\text{He}^4) = (3.58 \text{ Å})^{-3}$ and each particle has mass $m(\text{He}^4) = 6.64 \times 10^{-24} \text{ g}$. We assume that the particles interact via a central, repulsive, two-body potential possessing a Fourier transform $v(\mathbf{p})$. In the following,⁶ it suffices to specify the form of $v(\mathbf{p})$ for small p:

$$v(\mathbf{p}) \approx v_0 [1 - (p^2/p_c^2)], \quad v_0 > 0.$$
 (1)

In the Hartree-Fock approximation the Hamiltonian of the system is (we choose units so that $\hbar = 1$)

$${}^{3C}_{\mathbf{H}-\mathbf{F}} = \sum_{\vec{p}} \left(\frac{p^2}{2m} - \mu \right) N_{\vec{p}} + (2V)^{-1} \sum_{\vec{p}, \vec{p}' \neq \vec{p}} [v_0 + v(\vec{p} - \vec{p}')] N_{\vec{p}} N_{\vec{p}'} + (2V)^{-1} v_0 \sum_{\vec{p}} N_{\vec{p}}^{-2}, \qquad (2)$$

where μ is the chemical potential, and $N_{\mathbf{p}} = a_{\mathbf{p}}^{-1} a_{\mathbf{p}}^{-1}$ is the number operator for the single-particle state $V^{-1/2} \exp(i\mathbf{p}\cdot\mathbf{r})$ satisfying periodic boundary conditions with respect to V. As shown elsewhere,⁷ for temperatures below some critical value T_c it is possible to choose μ so that in the volume limit $[N, V \rightarrow \infty, N/V = n(\text{He}^4)]$, the excitation energy of the $\mathbf{\bar{p}} = 0$ single-particle state vanishes, and thus the thermal equilibrium occupation number, $\langle a_0^{\dagger} a_0 \rangle \equiv n_0 V$, of this state is O(N) (Bose-Einstein condensation). With this choice for μ , and $v(\mathbf{\bar{p}})$ as given in (1), the excitation energy for a state $\mathbf{\bar{p}}(\neq 0)$ is

 $\epsilon_{\overrightarrow{p}} = (p^2/2m^*) + n_0 v_0, \qquad (3)$

where

$$m^* = m(1 - 2mnv_0/p_c^2)^{-1} > m.$$
 (4)

The equilibrium occupation number of this state is

$$\langle N_{\vec{p}} \rangle = [\exp(\beta \epsilon_{\vec{p}}) - 1]^{-1},$$
 (5)

where $1/\beta = k_B T$.

The condition that the total number of particles is N yields an implicit equation for n_{0} ,

$$n_{0} = n - \lambda^{-3} F_{3/2} (\beta n_{0} v_{0}),$$

$$F_{\sigma}(z) = \frac{1}{\Gamma(\sigma)} \int_{0}^{\infty} dx \frac{x^{\sigma - 1}}{\exp(x + z) - 1},$$

$$\lambda = \left(\frac{2\pi}{m^{*} k_{B} T}\right)^{1/2}.$$
(6)

We have solved Eq. (6) analytically for those cases where $\alpha = m * nv_0 (mk_S T)^{-1} \ll 1$, and α \geq 10, as well as numerically for intermediate values. In all cases studied, the curve of $n_0/$ n vs T displays the same general behavior as is shown in Fig. 1. As the temperature is raised form T = 0, the quantity n_0/n slowly decreases from unity; and at a temperature T_c , which depends upon m*/m and $nv_0/(k_BT_I)$, n_0/n drops discontinuously to zero. Furthermore, $n_0(T)$ $-n_0(T_c-0) \propto D(T_c-T)^{1/2}$ for $0 < T_c-T \ll T_c$. To obtain the curve in Fig. 1 we have chosen v_{0} = $4\pi a/m$, the Fermi pseudopotential for a hard sphere of diameter a = 2.2 Å, ⁹ and p_C so that $T_c = T_\lambda \ (m^*/m = 5.52)$. Also shown in Fig. 1 are graphs of the superfluid fraction $\rho_{\rm S}/\rho$, where $\rho_{\rm S}$ is the superfluid mass density and $\rho = mn$, as obtained experimentally¹⁰ and by the formula¹¹

$$\rho_{S}(T)/\rho = m n_{0}(T) [m*n - (m*-m)n_{0}(T)]^{-1}.$$
 (7)

The theoretical curve has a discontinuity at T_{λ} and, as for $n_0(T)$, $\rho_S(T) - \rho_S(T_{\lambda} - 0) \propto B(T_{\lambda} - T)^{1/2}$ just below T_{λ} . This power-law behavior for ρ_S may be compared with the recent finding of Clow and Reppy¹² whereby $\rho_S(T) \sim C(T_{\lambda} - T)^{\gamma}$, $\gamma = 0.67 \pm 0.03$. Except near T_{λ} the two curves are in moderately good agreement.

FIG. 1. Experimental results for the superfluid fraction $\rho_{\rm S}/\rho$, and $\rho_{\rm S}/\rho$ and Bose-Einstein condensation fraction n_0/n versus temperature for the Hartree-Fock model when m*/m=5.52 and $nv_0(k_{\rm B}T_{\lambda})^{-1}=3.5$.

The internal energy of the system can be obtained by replacing the operator N_p in the expression for \mathcal{K}_{H-F} by its thermal average, $\langle N_{\vec{p}} \rangle$ of (5), and by omitting the terms $\mu \sum_{\vec{p}} \langle N_{\vec{p}} \rangle$. Using Eq. (1) for $v(\vec{p})$, the internal energy per unit volume is

$$U/V = \frac{3}{2}(\beta\lambda^3)^{-1}F_{5/2}(\beta n_0 v_0) + (n^2 - \frac{1}{2}n_0^2)v_0.$$
(8)

Because of the appearance of the terms containing n_0 , the dominant behavior of $C_V = (\partial U / \partial T)_{V,N}$ for $0 < T_C - T \ll T_C$ is given by

$$C_V \sim -\frac{1}{2} V v_0 (3n - n_0) (\partial n_0 / \partial T)_{V,N} \propto (T_c - T)^{-1/2}.$$
 (9)

In Figs. 2(a) and 2(b) we have plotted the results of the numerical evaluation of the complete expression for C_V as a function of T for the same choice of parameters v_0 and p_c^2 as were used to obtain ρ_S / ρ of Fig. 1.

We have extended the above calculations to a generalized version of the Bogoliubov model¹³ described by

$$\mathcal{H}_{\mathbf{B}} = \mathcal{H}_{\mathbf{H}-\mathbf{F}} + \frac{1}{2}n_{0}\sum_{\vec{p}(\neq 0)} v(\vec{p})(a_{\vec{p}}^{\dagger}a_{-\vec{p}}^{\dagger} + a_{-\vec{p}}a_{\vec{p}}), \quad (10)$$

where $n_0 = \langle a_0^{\dagger} a_0 \rangle / V$, the ensemble average being taken with respect to $\mathcal{K}_{\mathbf{B}}$. For this model when $nv_0 \ll k_{\mathbf{B}}T_I$, we find that $T_C/T_I \approx 1 + 0.15nv_0 \times \langle k_{\mathbf{B}}T_I \rangle^{-1}$ and

$$n_{0}(T_{c}-0)/n = 0.23nv_{0}/(k_{B}T_{I}),$$

$$n_{0}(T)-n_{0}(T_{c}-0)$$

$$\sim 1.17n(nv_{0}/k_{B}T_{I})^{1/2}[(T_{c}-T)/T_{I}]^{1/2}, \qquad (11)$$

for temperatures $0 < T_C - T \ll T_C$.¹⁴ To obtain this result we have used the relation⁵

$$\langle a_{\vec{p}}^{\dagger} a_{\vec{p}} \rangle = \frac{1}{2} [(f_{\vec{p}} / \epsilon_{\vec{p}}) \operatorname{coth}(\frac{1}{2} \beta \epsilon_{\vec{p}}) - 1],$$

$$f_{\vec{p}} = \frac{p^2}{2m} + n_0 v_0, \quad \epsilon_{\vec{p}} = \left[\frac{p^2}{2m} \left(\frac{p^2}{2m} + n_0 v_0\right)\right]^{1/2}, \quad (12)$$

and, for simplicity, we have assumed $v(\mathbf{\hat{p}}) = v_0$, so that $m^* = m$. The similar temperature behavior of n_0/n for both the Hartree-Fock and Bogoliubov models also applies to C_V just below T_C . In particular, for the Bogoliubov model $C_V \propto T^3$ and $(T_C - T)^{-1/2}$ for $T \ll T_C$ and $0 < T_C$ $-T \ll T_C$, respectively.

The present results for C_V and ρ_S , although obtained for two simplified models of a system

FIG. 2. (a) Specific heat C_V as a function of temperature for the Hartree-Fock model with the same parameters as used in Fig. 1. (b) $\text{Log}(C_V)$ vs $\log(T_{\lambda}-T)$ for $0 < T_{\lambda}-T \ll T_{\lambda}$ showing that $C_V \propto (T_{\lambda}-T)^{-1/2}$ in this region. The dashed straight line has slope $-\frac{1}{2}$.

of interacting bosons, give new impetus to London's idea¹ that the condensation of a macroscopic number of particles into a single quantum state plays a primary role in effecting the unusual properties of He II.

^{*}Part of this work is a contribution of the Laboratory for Research on the Structure of Matter, University of Pennsylvania, covering research sponsored by the Advanced Research Projects Agency.

[†]National Science Foundation Predoctoral Fellow. ¹See, for example, F. London, <u>Superfluids</u> (John Wiley & Sons, Inc., New York, 1954), Vol. II.

²M. J. Buckingham and W. M. Fairbank, <u>Progress</u> <u>in Low-Temperature Physics</u>, edited by C. J. Gorter (North-Holland Publishing Company, Amsterdam, 1961), Vol. III, Chap. III.

³R. Brout, Phys. Rev. <u>131</u>, 899 (1963), in a treatment of the many-boson system for $T > T_I$ which utilizes a simplified version of the Hartree-Fock approximation, finds that C_V has a finite discontinuity at T_I . If we write $\Re_{H-F} = \Re_0 + \Re'$, where $\Re_0 = \sum_{\vec{p}} [(p^2/2m) - \mu] N_{\vec{p}}$ is the ideal gas Hamiltonian, then in effect Brout has studied the Hamiltonian $\Re_0 + \langle \Re' \rangle_0$, where $\langle \cdots \rangle_0$ denotes the ensemble average taken with respect to \Re_0 .

⁴T. D. Lee and C. N. Yang, Phys. Rev. 112, 1419 (1958), studying a model Hamiltonian closely related to our $\mathcal{K}_{\mathbf{B}}$ of Eq. (10), find that C_V has a finite discontinuity at T_{I} . We believe that their result is due to an oversight in the analysis of the temperature behavior of a parameter $\overline{\xi}$ which is the counterpart of our n_0/n . In particular, we believe that they set $\overline{\xi} = 1$ in the right-hand side of their Eq. (32) and thus failed to find that $\overline{\xi}$ vs T is a double-valued curve for $T_I < T$ $< T_c$, with the upper branch being physically relevant. Hence, the discontinuity and power-law behavior of $\overline{\xi}(T) - \overline{\xi}(T_c - 0)$ were overlooked. A similar oversight is to be found in a description of the Lee-Yang work by K. Huang, in Studies in Statistical Mechanics, edited by J. de Boer and G. E. Uhlenbeck (North-Holland Publishing Company, Amsterdam, 1964), Vol. II, P. A, Eqs. (5.25), (5.27), and (5.29).

⁵M. Luban, Phys. Rev. <u>128</u>, 965 (1962) studied the pair Hamiltonian model and found that the entropy is discontinuous at T_{I} .

⁶A careful analysis shows that the replacement of $v(\bar{p})$ by the right-hand side of Eq. (1) leads to negligible errors when $m*nv_0(mk_BT_I)^{-1}$ is large compared with

unity, or, when small, if $p_c^{2}(2m * k_{\rm B}T_{I})^{-1} \gtrsim 3$. In any event our conclusions concerning the behavior of C_v and ρ_S near the phase transition are in no way affected.

⁷The discussion in W. D. Grobman and M. Luban, Phys. Rev. <u>147</u>, 166 (1966), Sec. VI, Appendix C, is relevant to this matter.

⁸This work made use of computer facilities at Princeton University which are supported in part by National Science Foundation Grant No. NSF-GP 579.

⁹The quantity a=2.2 Å is the closest distance of approach of two He atoms [see D. G. Henshaw, Phys. Rev. 119, 14 (1960)].

¹⁰J. G. Dash and R. D. Taylor, Phys. Rev. <u>105</u>, 7 (1957).

¹¹The quantity $\rho_S(T)$ is derived by using the relation $\vec{\mathbf{p}} = \rho_S \mathbf{v}_S$, where $\vec{\mathbf{p}}$ is the net momentum per unit volume when a single state of low momentum $\vec{\mathbf{k}} \neq 0$ is macroscopically occupied and $\vec{\mathbf{v}}_S = \vec{\mathbf{k}}/m$. Macroscopic occupation of the state $\vec{\mathbf{k}}$ is achieved by choosing μ so that $\epsilon(\vec{\mathbf{k}}) = 0$. In this case, for small values of $\vec{\mathbf{q}} = \vec{\mathbf{p}} - \vec{\mathbf{k}}$, Eq. (3) is modified to read

$$\epsilon_{\mathbf{p}} = \frac{q^2}{2m^*} + n_0 v_0 + \frac{\mathbf{q} \cdot \mathbf{k}}{m^*} + \frac{2\mathbf{q} \cdot \mathbf{p} v_0}{p_c^2}.$$

¹²J. R. Clow and J. D. Reppy, Phys. Rev. Letters <u>16</u>, 887 (1966).

 13 N. N. Bogoliubov, J. Phys. (U.S.S.R.) <u>11</u>, 23 (1947). 14 The calculations of n_0/n and C_V are readily performed using Eqs. (111), (112), (156), and (157) of Ref. 5.