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The effect of plasma temperature on the dis-
persion of electron-plasma waves is an old
problem. Shortly after the plasma oscillations
in an infinite, cold plasma were described by
Langmuir and Tonks, ' the effect of random ther-
mal motion on their dispersion relation was
calculated by Thomson and Thomson. ' They
assumed a resonance distribution for the elec-
tron velocities and obtained a result differing
from that of later work by a numerical coeffi-
cient. Vlasov3 studied the problem using a
Maxwellian velocity distribution and obtained,
for the long wavelength limit, the dispersion
relation

(u' = (u [1+3(kX )2]

where ~ is the wave frequency, &up =(4~ne'/
me)'" is the plasma frequency, k is the wave
number and ~D is the Debye length. However,
his work has been severely criticized' because
of the rather cavalier manner with which he
dealt with a divergent integral in the derivation.
A generally accepted derivation of the disper-
sion relation has been given by Landau. ~ Lan-
dau also found that the waves were damped,
even in the absence of collisions, and this part
of the theory has been verified in detail exper-
imentally. ' The physical mechanism respon-
sible for the dispersion and damping of the waves
has been elucidated by Bohm and Gross. ' All
these calculations were made for an infinite,
uniform collisionless plasma.

In this Letter we report an experiment designed
to measure the effect of plasma temperature
on the dispersion of electron plasma waves.
When the theory is modified to include the ef-
fects of finite size of the system and spatial
variation in plasma density, it accurately pre-
dicts the observed dispersion.

The geometry to be considered is a long col-
umn of plasma bounded in the radial direction
by a good conductor. The plasma is immersed
in a uniform finite magnetic field parallel to
the axis of the plasma column. The plasma
density is a function of radius, but its temper-
ature is not. We specify the properties of the
plasma by the dielectric tensor relating the

displacement to the electric field (D = e E).'
In the limit of waves with phase velocity small
compared with the velocity of light, V'&E may
be neglected and the electric field calculated
from a scalar potential, 4. When the plasma
is regarded as a dielectric, there are no free
charges and

V D= V (e ~ E) = -V ~ (e ~ V4) =0.

The frequency is sufficiently high that the mo-
tion of ions may be ignored. The electron gy-
roradius is assumed small compared with

4'(d4'/dr) ' and n(dn/dr) ', where n is the elec-
tron density, so the dielectric tensor is a lo-
cal quantity. Since n is a function of radial
position, e is also. In addition e is a function
of the wave frequency and the magnetic field.
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A suitable solution for 4' is

i(az +m O)4 =y r e

where k is the complex wave number describ-
ing the wave. Substituting (3) into (2), one ob-
tains
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FIG. 1. Electron density as a function of radial posi-
tion.

where czz and err are components of the dielec-
tric tensor.

The eigenfunction, cp, must satisfy the bound-

ary conditions that y equals zero at the conduct-
ing wall, and cp equals some given finite nor-
malization factor at the origin. In general,
y is complex. We have solved Eq. (4) numer-
ically, subject to the given boundary conditions,
for the experimentally observed radial electron-
density distribution. The complex eigenvalues,
k = kr + N~, computed for a series of real fre-
quencies v, give the dispersion and Landau
damping of the waves.

The machine that produces the plasma has
been described in detail previously. ' The steady-
state plasma is produced in a. duoplasmatron-
type hydrogen-arc source and drifts from it
into a long uniform magnetic field of a few hun-

dred gauss. For the data reported here, the
resulting cylindrical plasma column ha, s a, length
of 230 cm and a central density of 2.2&&10' elec-
trons/cm', and is immersed in a magnetic field
of 183 G. The background pressure is 1.1 x10
Torr (mostly H,). The plasma, temperature,
kT (where k is Boltzmann's constant), may
be adjusted by adjusting the source pressure,
and it is 6.5 and 9.6 eV for the two cases dis-
cussed. Hence, the Debye length is about 1
mm. The electron mean free path for electron-
ion collisions is of the order of 1000 m and
for electron-neutral collisions is about 40 m.
The plasma is surrounded by a stainless-steel
tube 5.2 cm in radius, which acts as a wave-
guide beyond cutoff to reduce electromagnet-
ic coupling between probes. The ra.dial densi-
ty profile of the plasma used for the present
experiment, as measured by a Langmuir probe,
is given in Fig. 1.

The plasma column is terminated at the end

opposite to the source by a negatively charged

plate. The electric field of this plate reflects
the electrons. An electron velocity analyzer
is mounted behind a 1-mm diam hole in the
end plate. When the end plate is made some-
what less negative, electrons in line with the
hole and with enough energy to reach the end
plate pass into the analyzer. By means of a
series of grids, the analyzer rejects any ions
which enter it and measures current of elec-
trons with energy greater than a given adjust-
able value. We obtain a current

l(EO) =e f F(E)dE)
0

where F(E) is the electron-energy distribution
function and e is the electron charge. The quan-
tity 1nl(E, ) plotted electr onica, lly aga.inst E,
is a straight line, proving that the parallel dis-
tribution function is decreasing exponentially
with energy, i.e., it is Maxwellian in the veloc-
ity range corresponding to three to five times
the mean thermal velocity. The parallel elec-
tron temperature of the plasma may be obtained
directly from the slope of the curve. The un-
certainty in the measured temperature is about
10

%%d
and mostly due to uncertainties in analyz-

er calibration (which was done with an electron
beam) .

Two radial probes, each consisting of a, 0.2-
mm diam tungsten wire, are placed in the plas-
ma. One probe is connected by coaxial cable
to a chopped-signal generator. The other probe
is connected to a receiver which includes a sharp,
high-frequency filter, a. string of broad-band
amplifiers, an rf detector, a video amplifier,
and a coherent detector operated at the trans-
mitter chopping frequency. Provision is made
to add a reference signal from the transmitter
to the receiver rf signal, i.e., we may use the
system as an interferometer. The transrnit-
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FIG. 2. Raw data. Upper curve is the logarithm of

received power. Lower curve is interferometer output.
Abcissa is probe separation.

ter is set at a series of fixed frequencies, and
at each, the receiving probe is moved longitu-
dinally. The position of the receiving probe,
which is transduced, is applied to the x axis
of an x-y recorder, and the interferometer
output or the logarithm of the received power
is applied to the y axis.

Typical raw data are shown in Fig. 2. The
slope of the power curve is the rate of power
damping of the wave. The signal decreases
smoothly as the probe is retracted radially
with a half-maximum diameter about equal to
that of the density profile. The distance between
peaks on the interferometer curve is the wave-
length. (There is a small correction because
the waves are damped. ) The wavelength can
be determined to 3%%uo over most of the range
of the experiment. From the measured wave-
lengths and the transmitter frequencies we plot
the dispersion relation of the waves, Fig. 3.
The difference in dispersion curves for trans-
mission in opposite directions is small.

For comparison with theory, we compute the
dispersion relation for the wave from Eq. (4)
using the measured radial density distribution,
the plasma temperature measured by the veloc-
ity analyzer, and the experimental value of
the magnetic field. We believe our Langmuir
probe data are reliable for relative measure-
ments of density, but not a sufficiently accur-
ate measure of the absolute density for our pur-
pose. Hence, we choose an absolute density
which normalizes the theory to the experimen-
tal dispersion data at low frequencies (high
phase velocities). In this part of the curve the
temperature correction is negligible. This den-
sity is consistent with that obtained from probe
measurements. The result is the solid curve
of Fig. 3. For our geometry, for k ~1 the slope
of the curve is almost proportional to the mean

FEQ. 3. Dispersion curve. The dashed line is com-
puted assuming the plasma temperature is zero. The
solid line is computed using the measured plasma tem-
perature. The circles are experimental.

thermal velocity of the plasma and is insensi-
tive to the radial-density-distribution function.
In this region we have almost an "infinite plas-
ma" result. In the range 0 &1 the dispersion
is dominated by the finite size of the system.
The small systematic difference between ex-
periment and theory can be completely elimi-
nated by using in the theory a mean thermal
velocity about 5%%uc larger than that obtained from
the velocity-analyzer measurement, and this
is within the accuracy of the analyzer calibra-
tion. In addition, the analyzer measures the
distribution function at three to five times the
mean thermal velocity. This is the region of
interest for the damping measurement, but
the dispersion depends strongly on the distri-
bution function at lower velocities where the
"temperature" may be slightly different. Both
the Maxwellian character of the velocity dis-
tribution at high velocities and a consideration
of the dynamics of electrons in the machine
led us to believe that such an effect cannot be
very large, but it could easily explain 5% dif-
ferences in the effective mean thermal veloc-
ity.

At first it might appear that the curve should
be parabolic in k as predicted by Eq. (1). How-
ever, the (kA. D) term in this equation is only
the first term in an asymptotic series. For
our case, the first four or five terms of this
series are important, and the series does not
even converge very well. To obtain satisfac-
tory agreement, it is necessary to use the plas-
ma-dispersion function, not an asymptotic rep-
resentation. The difference between computed
dispersion curves for the actual magnetic field
of 183 G and for a magnetic field of infinity
is negligible in this case. When the dispersion
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is computed, assuming that the plasma temper-
ature is zero, the dashed curve of Fig. 3 is
obtained. Except for a negligible correction
due to the fact that the magnetic field is not
infinite, this curve just scales vertically with
the square root of absolute density. Since the
slope of the experimental data is very differ-
ent from that of the zero-temperature theory,
it is impossible to obtain satisfactory agree-
ment with the zero-temperature theory no mat-
ter what normalization of the absolute density
of the plasma is chosen. The theoretical curve
has been computed for another case in which
the plasma temperature was 6.5 eV, and the
measured dispersion curve again agrees well
with the theory.

The Landau damping of these waves has been
reported in detail in a previous publication. '
Vfe there showed that they exhibit heavy expo-
nential damping under conditions where colli-
sional damping is negligible. That the damp-
ing is caused by electrons traveling at the phase
velocity of the wave, and the magnitude of the
damping, its dependence of phase velocity, and
its dependence on plasma temperature are ac-
curately predicted by the theory of Landau.

In Ref. 5, we calculated the damping by ex-
panding the solution of the eigenvalue equation
around real k to obtain the small imaginary
part of k. That procedure has the advantage
that all dependence of the damping on the finite
geometry of the system is eliminated in favor
of the group velocity, a measured quantity.
In addition, the plasma frequency does not ap-
pear in the formula either. Using the present
method of numerical integration, we again ob-
tain the imaginary part of k and may compare
it to the observed damping. The result is shown
in Fig. 4. The theoretical result is essential-
ly identical to that obtained by the expansion
theory for kf/kz &0.05. At k&/kz = 0.08 there
is a 25% difference between the two methods
of calculation due to higher order terms which
have been left out of the expansion calculation.

There are a double infinity of solutions of
Eq. (4) corresponding to various radial and

angular eigenmodes. However, all higher modes
at a given frequency are very heavily damped
compared with the lowest mode, i.e., that with

angular symmetry and the simplest radial de-
pendence. Hence, when we apply a given fre-
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FIG. 4. k~/k~ vs (vp/vP. Solid curve is the theory
by Landau.

quency to the transmitting antenna, only the
lowest mode is observable a short distance
away, and only its properties are measured.

In summary, the dispersion and damping of
the electron plasma waves in our experiment
may be computed by straightforward applica-
tion of the theory. If the effect of plasma tem-
perature is omitted from the theory, the theo-
retical result disagrees with the measurement.
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This formula, Eq. (13), Ref. 5, contains a numeri-
cal error. The coefficient of the 1/X term in the de-
nominator should be 45 instead of 15. The difference
in the predicted damping is small.
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