
VOLUME l7, NUMBER 3 PHYSICAL RKVIKW LKTTKRS 18 JUz.v 1966

ANTIFERROMAGNETISM IN Ti,03

David Adler
Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

(H,eceived 13 June 1966)

A Hartree-Pock theory of itinerant antiferromagnetism is presented and is applied to
explain the observed electric and magnetic properties of Ti203.

where T(x) is the kinetic energy of the electron
and its interactions with the fixed ions, V(x)
represents that part of the electronic Coulomb
and exchange interactions which does not de-
pend on spin, and Vex(x, o) is the spin-depen-
dent part of the exchange interactions. In the
Hartree-Fock approximation, the last two terms
are self-consistent ones which depend on the
state of the system. We write the Bloch wave
functions as
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where y(x-x„) are the Wannier functions as-

(2)

In a recent series of Letters, ' deGraaf and
Luzzi have attempted to explain the antiferro-
magnetic properties of Ti,O,' by a spin-den-
sity-wave calculation. However, the theory
they presented assumes that the spin-density-
wave energy gap is much greater than the band
width, an assumption which always gives a sub-
lattice magnetization very close to saturation.
But Abrahams found that the actual sublattice
magnetization for Ti,O, is very small, only
0.2p, B.' Thus this particular model cannot
apply to Ti,03.

Matsubara and Yokota' developed a zero-tem-
perature band theory of antiferromagnetism
which showed how a small moment could be
obtained by using an itinerant model, but the
extension to finite temperatures did not give
good results. In this Letter, we shall present
a zero-temperature theory equivalent to that
of Matsubara and Yokota, and then extend it
self-consistently to finite temperat. ures. We
shall then apply the results to the electric and
magnetic properties of Ti,03.

Consider a one-dimensional antiferromagnet-
ic crystal, with N magnetic ions spaced a/2
apart. Let the one-electron Hamiltonian of the
system be written

H(x, o) =T(x)+V(x)+V (x, o),ex

sociated with x„. Solving the resulting secu-
lar equation in the approximation of nearest-
neighbor interactions yields

E(k) =E + [(E /2)'+4P'cos'(ka/2)]i '
0 g

where
E =-(n+n')/2, E—:n-n',

0 ' g
n =- fdxy*(x)P(x)y(x),

n'=- fdxy*(x a/2)ff-(x)q (x a/2), -
P = fdxy*(x)P(x)y(x a/2). -

Thus, if n t n ', there is a splitting of bands
into two, with an energy gap equal to z-a' in-
troduced at the edges of the new reduced first
Brillouin zone. If there is one electron per
ion outside of the closed shells, the paramag-
netic solution (n = n'), always a possible self-
consistent state, results in a half-filled band,
and the material will be metallic. However,
if a self-consistent solution is possible with
e c n ', the lower half of the band is depressed
in energy, and the electrons present fill this
band exactly, resulting in an insulating state.
Calculation of the spin density in this case shows
that the state is antiferromagnetie with a mo-
ment of

M(0) =5~ [-,
' cose(k)]Np

where p, B is a Bohr magneton, and

tan9(k) =- 4P cos(—,'ka)/E

Since 4j3 is the paramagnetic band width, the
sublattice magnetization is a function of the
ratio of band width to band gap. If this ratio
is large, 8(k) is near m/2 everywhere except
very close to the band edges, cos9(k) is thus
very small almost everywhere, and the anti-
ferromagnetie state produced has a very small
moment. In order to obtain the moment 0.2p, B
appropriate to Ti,O„ the width of the valence
band must be 6 times the band gap. Since Ti,O,
has a band gap of 0.06 eV, ' this would imply
a valence band 0.4 eV wide.
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The above is a zero-temperature theory on-
ly, and cannot be extended to finite tempera-
ture simply by treating the material as a nor-
mal semiconductor, even though such a theo-
ry would show a typical decrease of magnetiza-
tion with thermal population of the upper band.
However, this procedure is incorrect for a
number of reasons which emerge when a care-
ful self-consistent theory is developed.

The first point to consider is that we are
dealing with a fully interacting system. In fact,
it was crucial to include the exchange-energy
term in the Hamiltonian (1) in order to obtain

any magnetic solutions at all, and this term
represents a pure interaction term. Thus,
if we were to write down the total energy of
the ground state of the antiferromagnetic sys-
tem by filling up the lower band in (3) with elec-
trons and adding up the one-particle energies
of the band, we would obtain an incorrect re-
sult since we would have counted the electron-
ic interactions twice. In order to find the cor-
rect total energy, we must subtract off half
the sum of the int. eractions. The important
term, insofar as the magnetic properties of
the system are concerned, is the spin-depen-
dent term Vex(x, v) in (1). It is the fact that
matrix elements of this term can differ for
spin-up and spin-down states which leads to
a nonzero o, -a' in (3), and thus a nonzero sub-
lattice magnetization in (4). If we turn off the
exchange interactions given by this term, we
always obtain the paramagnetic bands repre-
sented by (3) with K&=0. Thus we can easily
subtract the sum of these exchange interactions
from the sum of the one-particle energies and
obtain a better value for the total ground-state
energy of the system. A simple way of calcu-
lating this quantity is to evaluate

in this case is that the one-electron spectrum
given by (3) is true only for the ground state,
and is wrong for the excited states.

The simplest way of seeing this is to excite
a sufficient number of electrons from the low-
er to the upper band of (3) such that the mag-
netization given by (4) vanishes. In the proce
dure described above, this point would be iden-
tified as the Neel point of the system. The state
is not antiferromagnetic, and thus the matrix
elements of the exchange potential must be spin
independent. Consequently, it is inconsistent
to use the spectrum (3) with an energy gap,
E&, which can arise only from a spin dependence
of ~ex.

The proper result emerges directly from the
Hartree- Fock approximation. The term Vex
in (1) is a self-consistent one, and contains
in it a sum over occupied states. Thus chang-
ing the occupations not only changes the total
energy of the state, but it also changes the Ham-
iltonian itself, and thus the entire one-parti-
cle spectrum. It is clear, in general, that the
spectrum of (3) is properly modified by taking
E to be a power series in odd powers of sub-
lattice magnetization. In particular, for cases
such as Ti,O„ for which the initial moment is
s~all, the gap can be taken proportional to the
magnetization:

E (x) = E (0)M(x)/M(0),

where x is a parameter which describes the
excited states of the system. In the model un-
der consideration, a two-band semiconductor,
x can be taken to be the fraction of carriers
excited from the lower to the upper band: x

n/N. Using (6) a—nd again remembering to sub-
tract off half the sum of the interactions from
the sum of the one-particle energies, we ob-
tain the total energy of the excited states:

where the sum is over the states in the lower
band and the second term on the right repre-
sents the energies in (3) with a = a'.

We still have said nothing about the excited
states. One might now think that the energies
of the excited states can be obtained in a man-
ner completely analogous to (5) by filling up
states in the upper band of (3), leaving holes
in the lower band, and remembering to subtract
off half the sum of the interactions from the
sum of the one-particle energies. However,
even this would not be correct. The reason

E(x) =P~occ „[EE („)(a)+EE 0(u)],
g X g

where the sum is over the occupied states in
each band. For the excited states, we must
use the generalization of (4):

M(x) =5~ (+)[-,'cos8(k)]Np

where the upper sign is taken for an electron
in the upper band and the lower sign is taken
for an electron in the lower band. Equation (8)
can be expressed in terms of incomplete ellip-
tic integrals of the first kind, which can be
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FIG. 1. Magnetization as a function of temperature
for Ti203. The solid line represents the theoretical re-
sults for the model presented here. The dotted line is
that Brillouin function normalized to the same initial
magnetization and same Neel temperature. The experi-
mental points are the neutron-diffraction results of
H,ef. 2.
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evaluated from tables. Furthermore, substi-
tution of (3), (6), and (8) in (7) leads to an ex-
pression for E(x) which consists of incomplete
elliptic integrals of the second kind.

Having evaluated E(x), we have all the ener-
gy levels of the system; E(0) represents the
ground state and E(-,') represents the paramag-
netic, metallic state. Thus we can write domn

the partition function:

-E(x)/uT

x=0

and the free energy

I'" = -kT lnZ.

At a given temperature the system mill be in
the state which minimizes the free energy.
Thus minimization of + with respect to x gives
an expression for x as a function of T. Since
resistivity can be expressed

p=[&ed] ',

where p. is the mobility, assumption of a con-
stant mobility gives us p(T). Furthermore,

FIG. 2. Resistivity as a function of temperature for
Ti203. The experimental points are taken from Ref. 2.

substitution of x(T) into (8) enables us to evalu-
ate sublattice magnetization as a function of
temperature, M(T).

There are tmo parameters iri the present mod-
el. However, for the case of Ti,O„me know

from the work of Abrahams' that M(0) = 0.2NpB
and E&(0}=0.06 eV. Thus we can evaluate re-
sistivity and magnetization as functions of tem-
perature. The results are given in Figs. 1 and
2 and compared with Abraham's experimental
results. The resistivity mas calculated assum-
ing a temperature-independent mobility of 2

cm'/V- sec.
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